論文の概要: Creating A Coefficient of Change in the Built Environment After a
Natural Disaster
- arxiv url: http://arxiv.org/abs/2111.04462v2
- Date: Tue, 9 Nov 2021 20:12:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-14 15:54:28.412270
- Title: Creating A Coefficient of Change in the Built Environment After a
Natural Disaster
- Title(参考訳): 自然災害後の建築環境の変化係数の作成
- Authors: Karla Saldana Ochoa
- Abstract要約: 本研究では,ディープラーニングのワークフローを用いて構築環境の損傷を定量的に評価する手法を提案する。
世界中の50の震源地で自然災害前後の航空画像がGoogle Earthから得られた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study proposes a novel method to assess damages in the built environment
using a deep learning workflow to quantify it. Thanks to an automated crawler,
aerial images from before and after a natural disaster of 50 epicenters
worldwide were obtained from Google Earth, generating a 10,000 aerial image
database with a spatial resolution of 2 m per pixel. The study utilizes the
algorithm Seg-Net to perform semantic segmentation of the built environment
from the satellite images in both instances (prior and post-natural disasters).
For image segmentation, Seg-Net is one of the most popular and general CNN
architectures. The Seg-Net algorithm used reached an accuracy of 92% in the
segmentation. After the segmentation, we compared the disparity between both
cases represented as a percentage of change. Such coefficient of change
represents the damage numerically an urban environment had to quantify the
overall damage in the built environment. Such an index can give the government
an estimate of the number of affected households and perhaps the extent of
housing damage.
- Abstract(参考訳): 本研究では,深層学習ワークフローを用いて組込み環境の損傷を定量化する新しい手法を提案する。
自動クローラーのおかげで、世界中の50の震源の自然災害前後の航空画像がGoogle Earthから取得され、1ピクセルあたり2mの空間解像度を持つ1万の航空画像データベースが生成される。
本研究は,Seg-Netアルゴリズムを用いて,衛星画像から構築した環境のセマンティックセマンティックセグメンテーションを行う。
イメージセグメンテーションでは、Seg-Netは最も人気があり一般的なCNNアーキテクチャの一つである。
Seg-Netアルゴリズムは、セグメンテーションで92%の精度に達した。
分節化後,両症例間の差を変化率として比較した。
このような変化係数は、都市環境の被害を数値的に表し、建築環境全体の被害を定量化する必要があった。
このような指標は、政府が影響を受けた世帯の数と、おそらく住宅被害の程度を見積もることができる。
関連論文リスト
- Visual Context-Aware Person Fall Detection [52.49277799455569]
画像中の個人とオブジェクトを半自動分離するセグメンテーションパイプラインを提案する。
ベッド、椅子、車椅子などの背景オブジェクトは、転倒検知システムに挑戦し、誤ったポジティブアラームを引き起こす。
トレーニング中のオブジェクト固有のコンテキスト変換が、この課題を効果的に軽減することを示す。
論文 参考訳(メタデータ) (2024-04-11T19:06:36Z) - Aerial Lifting: Neural Urban Semantic and Building Instance Lifting from Aerial Imagery [51.73680703579997]
航空画像から都市規模のセマンティックスとビルレベルのインスタンスセグメンテーションのためのニューラルラジアンスフィールド法を提案する。
都市空撮画像の物体は、建物、車、道路など、相当な大きさのバリエーションを示している。
我々は,様々な大きさのオブジェクトのセグメンテーションを強化する,スケール適応型セマンティックラベル融合戦略を導入する。
次に、2次元のインスタンスラベルにおける多視点不整合問題を緩和するために、新しいクロスビューインスタンスラベルグループ化戦略を導入する。
論文 参考訳(メタデータ) (2024-03-18T14:15:39Z) - Transformer-based Flood Scene Segmentation for Developing Countries [1.7499351967216341]
洪水は大規模な自然災害であり、しばしば大量の死者、大規模な材料被害、経済的混乱を引き起こす。
早期警戒システム(EWS)は洪水を予測するための水位やその他の要因を常に評価し、被害を最小限に抑える。
FloodTransformerは、災害現場の空中画像から浸水した領域を検出し、セグメンテーションする最初のビジュアルトランスフォーマーベースのモデルである。
論文 参考訳(メタデータ) (2022-10-09T10:29:41Z) - Fully convolutional Siamese neural networks for buildings damage
assessment from satellite images [1.90365714903665]
自然災害後の被害評価は、災害から回復するための援助と力を最適に分配するために必要である。
本研究では,災害前後における同地域の衛星画像の自動比較のための計算手法を開発した。
我々は、広範囲にわたるアブレーション研究を含み、異なるエンコーダ、デコーダ、損失関数、拡張、および2つの画像を組み合わせるいくつかの方法を比較する。
論文 参考訳(メタデータ) (2021-10-31T14:18:59Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
空間的に変化する劣化に苦しむ画像の復元のための学習ベースソリューションを提案する。
本研究では、歪み局所化情報を活用し、画像中の困難な領域に動的に適応するネットワーク設計であるSPAIRを提案する。
論文 参考訳(メタデータ) (2021-08-19T11:02:25Z) - Post-Hurricane Damage Assessment Using Satellite Imagery and Geolocation
Features [0.2538209532048866]
本研究では,被災地の衛星画像と位置情報を活用し,災害後の被害建物を識別する混合データ手法を提案する。
この手法は、2017年のヒューストン大都市圏におけるハリケーン・ハーベイのケーススタディに基づいて、画像のみを用いて同様の作業を行うことで大幅に改善した。
本研究では,画像特徴に付加的な情報を提供するために位置情報機能の創造的な選択を行ったが,ドメイン知識や災害の種類に応じて,イベントの物理的挙動をモデル化するための他の機能を含めることはユーザ次第である。
論文 参考訳(メタデータ) (2020-12-15T21:30:19Z) - MSNet: A Multilevel Instance Segmentation Network for Natural Disaster
Damage Assessment in Aerial Videos [74.22132693931145]
本研究では, ハリケーン, 洪水, 火災などの自然災害後の建物被害を効率的に評価する課題について検討する。
最初のコントリビューションは、ソーシャルメディアからユーザ生成された空中ビデオと、インスタンスレベルのビルディング損傷マスクのアノテーションで構成される、新しいデータセットである。
第二のコントリビューションはMSNetと呼ばれる新しいモデルで、新しい領域の提案ネットワーク設計を含んでいる。
論文 参考訳(メタデータ) (2020-06-30T02:23:05Z) - Synthetic Image Augmentation for Damage Region Segmentation using
Conditional GAN with Structure Edge [0.0]
画像から画像への変換マッピングを用いて、損傷画像を生成する合成拡張手法を提案する。
我々は,FCN-8s,SegNet,DeepLabv3+Xception-v2などの画素ごとのセグメンテーションアルゴリズムを適用した。
合成拡張法で加算されたデータセットの再トレーニングは、平均IoU、興味の損傷領域IoU、精度、リコール、BFスコアに基づいて、テスト画像の予測時に精度が高くなることを示した。
論文 参考訳(メタデータ) (2020-05-07T06:04:02Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNetは、建物を同時に分割し、個々の建物に対する損傷レベルを評価し、エンドツーエンドでトレーニングできる統一モデルである。
RescueNetは大規模で多様なxBDデータセットでテストされており、従来の手法よりもはるかに優れたセグメンテーションと損傷分類性能を実現している。
論文 参考訳(メタデータ) (2020-04-15T19:52:09Z) - Image Fine-grained Inpainting [89.17316318927621]
拡張畳み込みの密結合を利用してより大きく効果的な受容場を得る一段階モデルを提案する。
この効率的なジェネレータをよく訓練するために、頻繁に使用されるVGG特徴整合損失を除いて、新しい自己誘導回帰損失を設計する。
また、局所的・グローバルな分枝を持つ識別器を用いて、局所的・グローバルな内容の整合性を確保する。
論文 参考訳(メタデータ) (2020-02-07T03:45:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。