論文の概要: Interactive Inverse Reinforcement Learning for Cooperative Games
- arxiv url: http://arxiv.org/abs/2111.04698v1
- Date: Mon, 8 Nov 2021 18:24:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-09 17:26:16.046242
- Title: Interactive Inverse Reinforcement Learning for Cooperative Games
- Title(参考訳): 協調ゲームのための対話型逆強化学習
- Authors: Thomas Kleine Buening, Anne-Marie George, Christos Dimitrakakis
- Abstract要約: 我々は、潜在的に最適でないパートナーと効果的に協力することを学ぶことができるAIエージェントを設計する問題について研究する。
この問題は、協調的な2エージェントのマルコフ決定プロセスとしてモデル化されている。
学習者の方針が遷移関数に有意な影響を及ぼす場合、報酬関数を効率的に学習できることが示される。
- 参考スコア(独自算出の注目度): 7.257751371276486
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of designing AI agents that can learn to cooperate
effectively with a potentially suboptimal partner while having no access to the
joint reward function. This problem is modeled as a cooperative episodic
two-agent Markov decision process. We assume control over only the first of the
two agents in a Stackelberg formulation of the game, where the second agent is
acting so as to maximise expected utility given the first agent's policy. How
should the first agent act in order to learn the joint reward function as
quickly as possible, and so that the joint policy is as close to optimal as
possible? In this paper, we analyse how knowledge about the reward function can
be gained in this interactive two-agent scenario. We show that when the
learning agent's policies have a significant effect on the transition function,
the reward function can be learned efficiently.
- Abstract(参考訳): 共同報酬機能にアクセスできないまま、潜在的に最適でないパートナーと効果的に協力できるAIエージェントを設計する際の課題について検討する。
この問題は、協調的エピソード2エージェントマルコフ決定過程としてモデル化される。
ゲームにおけるスタックルバーグの定式化における2つのエージェントのうち、第1のエージェントのみを制御し、第2のエージェントは、第1のエージェントのポリシーにより期待されたユーティリティを最大化するために行動する。
第1のエージェントは,共同報酬機能を可能な限り早く学習し,共同政策が可能な限り最適なものにするために,どのように行動すべきだろうか?
本稿では,この対話型2エージェントシナリオにおいて,報酬関数に関する知識がどのように得られるかを分析する。
学習者の方針が遷移関数に有意な影響を及ぼす場合,報酬関数を効率的に学習できることを示す。
関連論文リスト
- Principal-Agent Reward Shaping in MDPs [50.914110302917756]
主要な問題とは、ある政党が他の政党に代わって行動し、利害対立を引き起こすことである。
本研究では,主役とエージェントが異なる報酬関数を持つ2人プレイのスタックゲームについて検討し,エージェントは両プレイヤーに対してMDPポリシーを選択する。
この結果は,有限の地平線を持つ木と決定論的決定過程を確立した。
論文 参考訳(メタデータ) (2023-12-30T18:30:44Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgentは、大規模な言語モデルを利用してプロアクティブエージェントを生成する新しいフレームワークである。
ProAgentは現状を分析し、チームメイトの意図を観察から推測することができる。
ProAgentは高度なモジュール化と解釈可能性を示し、様々な調整シナリオに容易に統合できる。
論文 参考訳(メタデータ) (2023-08-22T10:36:56Z) - Decentralized scheduling through an adaptive, trading-based multi-agent
system [1.7403133838762448]
多エージェント強化学習システムでは、あるエージェントの動作が他のエージェントの報酬に悪影響を及ぼす可能性がある。
この作業は、エージェントが入ってくるジョブをコアに割り当てる責任を負うシミュレーションスケジューリング環境に、トレーディングアプローチを適用します。
エージェントは計算コアの使用権を交換して、低優先度で低報酬のジョブよりも高速に、高利益のジョブを処理できる。
論文 参考訳(メタデータ) (2022-07-05T13:50:18Z) - Cooperative Artificial Intelligence [0.0]
我々は,ゲーム理論と人工知能の交わりに関する研究の必要性を論じる。
本稿では,外部エージェントが人工学習者の協調を促進する方法について議論する。
また, 計画エージェントをオフにしても, 結果が一定のゲームにおいて安定であることを示す。
論文 参考訳(メタデータ) (2022-02-20T16:50:37Z) - Learning to Cooperate with Unseen Agent via Meta-Reinforcement Learning [4.060731229044571]
アドホックなチームワーク問題は、エージェントが共通の目標を達成するために、以前は目に見えないエージェントと協力しなければならない状況を記述する。
エージェントの振る舞いを設計するためにドメイン知識を使用することで、エージェントに協調的なスキルを実装することができる。
本稿では,メタ強化学習(meta-RL)の定式化をアドホックなチームワーク問題に応用する。
論文 参考訳(メタデータ) (2021-11-05T12:01:28Z) - Cooperative and Competitive Biases for Multi-Agent Reinforcement
Learning [12.676356746752893]
マルチエージェント強化学習(MARL)アルゴリズムのトレーニングは,単一エージェント強化学習アルゴリズムのトレーニングよりも難しい。
本稿では,他のエージェントの偏りのある行動情報を用いたMARL訓練を促進するアルゴリズムを提案する。
本アルゴリズムは, 多様な協調競合環境において, 既存のアルゴリズムを上回っていることを実証した。
論文 参考訳(メタデータ) (2021-01-18T05:52:22Z) - Multi-agent Policy Optimization with Approximatively Synchronous
Advantage Estimation [55.96893934962757]
マルチエージェントシステムでは、異なるエージェントの警察を共同で評価する必要がある。
現在の方法では、バリュー関数やアドバンテージ関数は非同期に評価される対実関節アクションを使用する。
本研究では,近似的に同期する利点推定を提案する。
論文 参考訳(メタデータ) (2020-12-07T07:29:19Z) - UneVEn: Universal Value Exploration for Multi-Agent Reinforcement
Learning [53.73686229912562]
我々はUniversal Value Exploration(UneVEn)と呼ばれる新しいMARLアプローチを提案する。
UneVEnは、一連の関連するタスクと、普遍的な後継機能の線形分解を同時に学習する。
一連の探索ゲームにおける実証的な結果、エージェント間の重要な調整を必要とする協調捕食・捕食作業への挑戦、およびStarCraft IIのマイクロマネジメントベンチマークは、UneVEnが他の最先端のMARLメソッドが失敗するタスクを解決できることを示している。
論文 参考訳(メタデータ) (2020-10-06T19:08:47Z) - Learning Individually Inferred Communication for Multi-Agent Cooperation [37.56115000150748]
我々はエージェントエージェントがエージェントエージェントコミュニケーションの事前学習を可能にするために、個別推論通信(I2C)を提案する。
先行知識は因果推論によって学習され、フィードフォワードニューラルネットワークによって実現される。
I2Cは通信オーバーヘッドを減らすだけでなく、様々なマルチエージェント協調シナリオのパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2020-06-11T14:07:57Z) - Learning to Incentivize Other Learning Agents [73.03133692589532]
我々は、学習インセンティブ関数を用いて、RLエージェントに他のエージェントに直接報酬を与える能力を持たせる方法を示す。
このようなエージェントは、一般的なマルコフゲームにおいて、標準のRLと対戦型エージェントを著しく上回っている。
私たちの仕事は、マルチエージェントの未来において共通の善を確実にする道のりに沿って、より多くの機会と課題を指しています。
論文 参考訳(メタデータ) (2020-06-10T20:12:38Z) - Intrinsic Motivation for Encouraging Synergistic Behavior [55.10275467562764]
スパース・リワード・シナジスティック・タスクにおける強化学習の探索バイアスとしての本質的モチベーションの役割について検討した。
私たちのキーとなる考え方は、シナジスティックなタスクにおける本質的なモチベーションのための優れた指針は、エージェントが自分自身で行動している場合、達成できない方法で世界に影響を与える行動を取ることである。
論文 参考訳(メタデータ) (2020-02-12T19:34:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。