論文の概要: Cooperative Artificial Intelligence
- arxiv url: http://arxiv.org/abs/2202.09859v1
- Date: Sun, 20 Feb 2022 16:50:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-25 10:14:03.750742
- Title: Cooperative Artificial Intelligence
- Title(参考訳): 協調型人工知能
- Authors: Tobias Baumann
- Abstract要約: 我々は,ゲーム理論と人工知能の交わりに関する研究の必要性を論じる。
本稿では,外部エージェントが人工学習者の協調を促進する方法について議論する。
また, 計画エージェントをオフにしても, 結果が一定のゲームにおいて安定であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In the future, artificial learning agents are likely to become increasingly
widespread in our society. They will interact with both other learning agents
and humans in a variety of complex settings including social dilemmas. We argue
that there is a need for research on the intersection between game theory and
artificial intelligence, with the goal of achieving cooperative artificial
intelligence that can navigate social dilemmas well. We consider the problem of
how an external agent can promote cooperation between artificial learners by
distributing additional rewards and punishments based on observing the actions
of the learners. We propose a rule for automatically learning how to create the
right incentives by considering the anticipated parameter updates of each
agent. Using this learning rule leads to cooperation with high social welfare
in matrix games in which the agents would otherwise learn to defect with high
probability. We show that the resulting cooperative outcome is stable in
certain games even if the planning agent is turned off after a given number of
episodes, while other games require ongoing intervention to maintain mutual
cooperation. Finally, we reflect on what the goals of multi-agent reinforcement
learning should be in the first place, and discuss the necessary building
blocks towards the goal of building cooperative AI.
- Abstract(参考訳): 将来的には、我々の社会に人工知能エージェントが普及する可能性が高い。
それらは、社会的ジレンマを含むさまざまな複雑な設定で、他の学習エージェントと人間の両方と対話する。
我々は、ゲーム理論と人工知能の交点の研究が必要であり、社会的ジレンマをうまくナビゲートできる協調的な人工知能を実現することを目標としている。
学習者の行動を観察し,追加の報酬や罰を分配することで,外部エージェントが人工学習者の協力を促進するかという課題を考察する。
各エージェントの予測パラメータ更新を考慮し,適切なインセンティブ作成方法を自動的に学習するルールを提案する。
この学習規則を用いることで、エージェントが高い確率で欠陥を学習するマトリクスゲームにおいて、高い社会福祉と協調することにつながる。
その結果,計画エージェントが一定回数のエピソードの後にオフになっても,あるゲームでは協調的な結果が安定し,他のゲームでは相互協力を維持するために継続的な介入が必要であることが示された。
最後に,マルチエージェント強化学習の目標がそもそも何であるかを考察し,協調型AI構築の目標に向けた必要な構築ブロックについて議論する。
関連論文リスト
- Multi-agent cooperation through learning-aware policy gradients [53.63948041506278]
利己的な個人はしばしば協力に失敗し、マルチエージェント学習の根本的な課題を提起する。
本稿では,学習型強化学習のための,偏見のない高導出性ポリシー勾配アルゴリズムを提案する。
我々は, 受刑者のジレンマから, 自己関心のある学習エージェントの間でどのように, いつ, 協力関係が生じるかの新たな説明を得た。
論文 参考訳(メタデータ) (2024-10-24T10:48:42Z) - SOTOPIA: Interactive Evaluation for Social Intelligence in Language Agents [107.4138224020773]
人工エージェントと人間との複雑な社会的相互作用をシミュレートするオープンエンド環境であるSOTOPIAを提案する。
エージェントは、複雑な社会的目標を達成するために協調し、協力し、交換し、互いに競い合う。
GPT-4は,人間よりも目標達成率が著しく低く,社会的常識的推論や戦略的コミュニケーション能力の発揮に苦慮していることがわかった。
論文 参考訳(メタデータ) (2023-10-18T02:27:01Z) - Deconstructing Cooperation and Ostracism via Multi-Agent Reinforcement
Learning [3.3751859064985483]
一方のエージェントが常に協力している場合でも,ネットワークのリワイアリングが相互協力を促進することを示す。
また、オストラシズムだけでは協力を浮かび上がらせるには不十分であることも分かっています。
本研究は,協力の出現に必要な条件とメカニズムについて考察した。
論文 参考訳(メタデータ) (2023-10-06T23:18:55Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
大規模言語モデル(LLM)は、人工知能(AGI)の潜在的な火花と見なされる
まず、エージェントの概念を哲学的起源からAI開発まで追跡し、LLMがエージェントに適した基盤である理由を説明します。
単一エージェントシナリオ,マルチエージェントシナリオ,ヒューマンエージェント協調の3つの側面において,LLMベースのエージェントの広範な応用について検討する。
論文 参考訳(メタデータ) (2023-09-14T17:12:03Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgentは、大規模な言語モデルを利用してプロアクティブエージェントを生成する新しいフレームワークである。
ProAgentは現状を分析し、チームメイトの意図を観察から推測することができる。
ProAgentは高度なモジュール化と解釈可能性を示し、様々な調整シナリオに容易に統合できる。
論文 参考訳(メタデータ) (2023-08-22T10:36:56Z) - Incorporating Rivalry in Reinforcement Learning for a Competitive Game [65.2200847818153]
本研究は,競争行動の社会的影響に基づく新しい強化学習機構を提案する。
提案モデルでは, 人工エージェントの学習を調節するための競合スコアを導出するために, 客観的, 社会的認知的メカニズムを集約する。
論文 参考訳(メタデータ) (2022-08-22T14:06:06Z) - Any-Play: An Intrinsic Augmentation for Zero-Shot Coordination [0.4153433779716327]
我々は、協調型AIを評価するための代替基準を定式化し、この基準を「アルゴリズム間クロスプレイ(inter-algorithm cross-play)」と呼ぶ。
このパラダイムでは,Other-Play や Off-Belief Learning といった,最先端の協調型AIアルゴリズムが低性能であることを示す。
本稿では,Any-Play学習のアルゴリズムをアルゴリズム間クロスプレイ設定に一般化するために,Any-Play学習の拡張を提案する。
論文 参考訳(メタデータ) (2022-01-28T21:43:58Z) - Hidden Agenda: a Social Deduction Game with Diverse Learned Equilibria [57.74495091445414]
社会的推論ゲームは、個人が他人に関する潜在的に信頼できない情報を合成する方法を学ぶための道を提供する。
本研究では,未知のチームアライメントのシナリオにおいて,学習エージェントを研究するための2D環境を提供する2チームソーシャル推論ゲームであるHidden Agendaを紹介する。
Hidden Agendaで訓練された強化学習エージェントは、自然言語でのコミュニケーションを必要とせずに、協力や投票など、さまざまな行動を学ぶことができることを示した。
論文 参考訳(メタデータ) (2022-01-05T20:54:10Z) - Adversarial Attacks in Cooperative AI [0.0]
多エージェント環境における単エージェント強化学習アルゴリズムは協調の育成には不十分である。
敵機械学習における最近の研究は、モデルは容易に誤った決定を下すことができることを示している。
協調AIは、以前の機械学習研究では研究されなかった新たな弱点を導入する可能性がある。
論文 参考訳(メタデータ) (2021-11-29T07:34:12Z) - Learning Human Rewards by Inferring Their Latent Intelligence Levels in
Multi-Agent Games: A Theory-of-Mind Approach with Application to Driving Data [18.750834997334664]
我々は、人間は有理論的であり、他人の意思決定過程を推論する際に異なる知能レベルを持っていると論じる。
学習中の人間の潜在知能レベルを推論する,新しいマルチエージェント逆強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-07T07:48:31Z) - Real-World Human-Robot Collaborative Reinforcement Learning [6.089774484591287]
本研究では,人間ロボットによる協調型迷路ゲームの現実的な構成について述べる。
ロボットエージェントの制御には深層強化学習を用い,実戦30分以内の結果を得た。
本研究では,人間とロボットエージェント間の時間的相互政治学習の結果を提示し,各参加者のエージェントがゲームプレイの表現として機能することを示す。
論文 参考訳(メタデータ) (2020-03-02T19:34:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。