Feature-enhanced Generation and Multi-modality Fusion based Deep Neural
Network for Brain Tumor Segmentation with Missing MR Modalities
- URL: http://arxiv.org/abs/2111.04735v1
- Date: Mon, 8 Nov 2021 10:59:40 GMT
- Title: Feature-enhanced Generation and Multi-modality Fusion based Deep Neural
Network for Brain Tumor Segmentation with Missing MR Modalities
- Authors: Tongxue Zhou, St\'ephane Canu, Pierre Vera and Su Ruan
- Abstract summary: The main problem is that not all types of MRIs are always available in clinical exams.
We propose a novel brain tumor segmentation network in the case of missing one or more modalities.
The proposed network consists of three sub-networks: a feature-enhanced generator, a correlation constraint block and a segmentation network.
- Score: 2.867517731896504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using multimodal Magnetic Resonance Imaging (MRI) is necessary for accurate
brain tumor segmentation. The main problem is that not all types of MRIs are
always available in clinical exams. Based on the fact that there is a strong
correlation between MR modalities of the same patient, in this work, we propose
a novel brain tumor segmentation network in the case of missing one or more
modalities. The proposed network consists of three sub-networks: a
feature-enhanced generator, a correlation constraint block and a segmentation
network. The feature-enhanced generator utilizes the available modalities to
generate 3D feature-enhanced image representing the missing modality. The
correlation constraint block can exploit the multi-source correlation between
the modalities and also constrain the generator to synthesize a
feature-enhanced modality which must have a coherent correlation with the
available modalities. The segmentation network is a multi-encoder based U-Net
to achieve the final brain tumor segmentation. The proposed method is evaluated
on BraTS 2018 dataset. Experimental results demonstrate the effectiveness of
the proposed method which achieves the average Dice Score of 82.9, 74.9 and
59.1 on whole tumor, tumor core and enhancing tumor, respectively across all
the situations, and outperforms the best method by 3.5%, 17% and 18.2%.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
We propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers.
The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network superior performance than the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-11T15:46:00Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
Brain tumor represents one of the most fatal cancers around the world, and is very common in children and the elderly.
We propose a novel cross-modality guidance-aided multi-modal learning with dual attention for addressing the task of MRI brain tumor grading.
arXiv Detail & Related papers (2024-01-17T07:54:49Z) - Automated Ensemble-Based Segmentation of Adult Brain Tumors: A Novel
Approach Using the BraTS AFRICA Challenge Data [0.0]
We introduce an ensemble method that comprises eleven unique variations based on three core architectures.
Our findings reveal that the ensemble approach, combining different architectures, outperforms single models.
These results underline the potential of tailored deep learning techniques in precisely segmenting brain tumors.
arXiv Detail & Related papers (2023-08-14T15:34:22Z) - Multiclass MRI Brain Tumor Segmentation using 3D Attention-based U-Net [0.0]
This paper proposes a 3D attention-based U-Net architecture for multi-region segmentation of brain tumors.
The attention mechanism helps to improve segmentation accuracy by de-emphasizing healthy tissues and accentuating malignant tissues.
arXiv Detail & Related papers (2023-05-10T14:35:07Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
We present a deep learning-based brain tumor recurrence location prediction network.
We first train a multi-modal brain tumor segmentation network on the public dataset BraTS 2021.
Then, the pre-trained encoder is transferred to our private dataset for extracting the rich semantic features.
Two decoders are constructed to jointly segment the present brain tumor and predict its future tumor recurrence location.
arXiv Detail & Related papers (2023-04-11T02:45:38Z) - Integrative Imaging Informatics for Cancer Research: Workflow Automation
for Neuro-oncology (I3CR-WANO) [0.12175619840081271]
We propose an artificial intelligence-based solution for the aggregation and processing of multisequence neuro-Oncology MRI data.
Our end-to-end framework i) classifies MRI sequences using an ensemble classifier, ii) preprocesses the data in a reproducible manner, and iv) delineates tumor tissue subtypes.
It is robust to missing sequences and adopts an expert-in-the-loop approach, where the segmentation results may be manually refined by radiologists.
arXiv Detail & Related papers (2022-10-06T18:23:42Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Latent Correlation Representation Learning for Brain Tumor Segmentation
with Missing MRI Modalities [2.867517731896504]
Accurately segmenting brain tumor from MR images is the key to clinical diagnostics and treatment planning.
It's common to miss some imaging modalities in clinical practice.
We present a novel brain tumor segmentation algorithm with missing modalities.
arXiv Detail & Related papers (2021-04-13T14:21:09Z) - HI-Net: Hyperdense Inception 3D UNet for Brain Tumor Segmentation [17.756591105686]
This paper proposes hyperdense inception 3D UNet (HI-Net), which captures multi-scale information by stacking factorization of 3D weighted convolutional layers in the residual inception block.
Preliminary results on the BRATS 2020 testing set show that achieved by our proposed approach, the dice (DSC) scores of ET, WT, and TC are 0.79457, 0.87494, and 0.83712, respectively.
arXiv Detail & Related papers (2020-12-12T09:09:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.