Deep Learning Approach for Aggressive Driving Behaviour Detection
- URL: http://arxiv.org/abs/2111.04794v1
- Date: Mon, 8 Nov 2021 20:06:16 GMT
- Title: Deep Learning Approach for Aggressive Driving Behaviour Detection
- Authors: Farid Talebloo, Emad A. Mohammed, Behrouz Far
- Abstract summary: This study identifies the timesteps when a driver in different circumstances (rush, mental conflicts, reprisal) begins to drive aggressively.
An observer (real or virtual) is needed to examine driving behaviour to discover aggressive driving occasions.
We overcome this problem by using a smartphone's GPS sensor to detect locations and classify drivers' driving behaviour every three minutes.
- Score: 1.933681537640272
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Driving behaviour is one of the primary causes of road crashes and accidents,
and these can be decreased by identifying and minimizing aggressive driving
behaviour. This study identifies the timesteps when a driver in different
circumstances (rush, mental conflicts, reprisal) begins to drive aggressively.
An observer (real or virtual) is needed to examine driving behaviour to
discover aggressive driving occasions; we overcome this problem by using a
smartphone's GPS sensor to detect locations and classify drivers' driving
behaviour every three minutes. To detect timeseries patterns in our dataset, we
employ RNN (GRU, LSTM) algorithms to identify patterns during the driving
course. The algorithm is independent of road, vehicle, position, or driver
characteristics. We conclude that three minutes (or more) of driving (120
seconds of GPS data) is sufficient to identify driver behaviour. The results
show high accuracy and a high F1 score.
Related papers
- Detecting Socially Abnormal Highway Driving Behaviors via Recurrent
Graph Attention Networks [4.526932450666445]
This work focuses on detecting abnormal driving behaviors from trajectories produced by highway video surveillance systems.
We propose an autoencoder with a Recurrent Graph Attention Network that can capture the highway driving behaviors contextualized on the surrounding cars.
Our model is scalable to large freeways with thousands of cars.
arXiv Detail & Related papers (2023-04-23T01:32:47Z) - Unsupervised Driving Event Discovery Based on Vehicle CAN-data [62.997667081978825]
This work presents a simultaneous clustering and segmentation approach for vehicle CAN-data that identifies common driving events in an unsupervised manner.
We evaluate our approach with a dataset of real Tesla Model 3 vehicle CAN-data and a two-hour driving session that we annotated with different driving events.
arXiv Detail & Related papers (2023-01-12T13:10:47Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
Nonobjective driving experience is difficult to model.
In this paper, we propose a FeedBack Loop Network (FBLNet) which attempts to model the driving experience accumulation procedure.
Under the guidance of the incremental knowledge, our model fuses the CNN feature and Transformer feature that are extracted from the input image to predict driver attention.
arXiv Detail & Related papers (2022-12-05T08:25:09Z) - Modelling and Detection of Driver's Fatigue using Ontology [60.090278944561184]
Road accidents are the eight leading cause of death all over the world.
Various factors cause driver's fatigue.
Ontological knowledge and rules for driver fatigue detection are to be integrated into an intelligent system.
arXiv Detail & Related papers (2022-08-31T08:42:28Z) - Unsupervised Driving Behavior Analysis using Representation Learning and
Exploiting Group-based Training [15.355045011160804]
Driving behavior monitoring plays a crucial role in managing road safety and decreasing the risk of traffic accidents.
Current work performs a robust driving pattern analysis by capturing variations in driving patterns.
It forms consistent groups by learning compressed representation of time series.
arXiv Detail & Related papers (2022-05-12T10:27:47Z) - Driving Anomaly Detection Using Conditional Generative Adversarial
Network [26.45460503638333]
This study proposes an unsupervised method to quantify driving anomalies using a conditional generative adversarial network (GAN)
The approach predicts upcoming driving scenarios by conditioning the models on the previously observed signals.
The results are validated with perceptual evaluations, where annotators are asked to assess the risk and familiarity of the videos detected with high anomaly scores.
arXiv Detail & Related papers (2022-03-15T22:10:01Z) - Driver2vec: Driver Identification from Automotive Data [44.84876493736275]
Driver2vec is able to accurately identify the driver from a short 10-second interval of sensor data.
Driver2vec is trained on a dataset of 51 drivers provided by Nervtech.
arXiv Detail & Related papers (2021-02-10T03:09:13Z) - Driver Anomaly Detection: A Dataset and Contrastive Learning Approach [17.020790792750457]
We propose a contrastive learning approach to learn a metric to differentiate normal driving from anomalous driving.
Our method reaches 0.9673 AUC on the test set, demonstrating the effectiveness of the contrastive learning approach on the anomaly detection task.
arXiv Detail & Related papers (2020-09-30T13:23:21Z) - Learning Accurate and Human-Like Driving using Semantic Maps and
Attention [152.48143666881418]
This paper investigates how end-to-end driving models can be improved to drive more accurately and human-like.
We exploit semantic and visual maps from HERE Technologies and augment the existing Drive360 dataset with such.
Our models are trained and evaluated on the Drive360 + HERE dataset, which features 60 hours and 3000 km of real-world driving data.
arXiv Detail & Related papers (2020-07-10T22:25:27Z) - TripMD: Driving patterns investigation via Motif Analysis [3.42658286826597]
TripMD is a system that extracts the most relevant driving patterns from sensor recordings.
We show that our system can extract a rich number of driving patterns from a single driver.
arXiv Detail & Related papers (2020-07-07T18:34:31Z) - Driver Intention Anticipation Based on In-Cabin and Driving Scene
Monitoring [52.557003792696484]
We present a framework for the detection of the drivers' intention based on both in-cabin and traffic scene videos.
Our framework achieves a prediction with the accuracy of 83.98% and F1-score of 84.3%.
arXiv Detail & Related papers (2020-06-20T11:56:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.