TripMD: Driving patterns investigation via Motif Analysis
- URL: http://arxiv.org/abs/2007.03727v4
- Date: Mon, 5 Jul 2021 16:49:18 GMT
- Title: TripMD: Driving patterns investigation via Motif Analysis
- Authors: Maria In\^es Silva, Roberto Henriques
- Abstract summary: TripMD is a system that extracts the most relevant driving patterns from sensor recordings.
We show that our system can extract a rich number of driving patterns from a single driver.
- Score: 3.42658286826597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Processing driving data and investigating driving behavior has been receiving
an increasing interest in the last decades, with applications ranging from car
insurance pricing to policy making. A common strategy to analyze driving
behavior is to study the maneuvers being performance by the driver. In this
paper, we propose TripMD, a system that extracts the most relevant driving
patterns from sensor recordings (such as acceleration) and provides a
visualization that allows for an easy investigation. Additionally, we test our
system using the UAH-DriveSet dataset, a publicly available naturalistic
driving dataset. We show that (1) our system can extract a rich number of
driving patterns from a single driver that are meaningful to understand driving
behaviors and (2) our system can be used to identify the driving behavior of an
unknown driver from a set of drivers whose behavior we know.
Related papers
- DriveCoT: Integrating Chain-of-Thought Reasoning with End-to-End Driving [81.04174379726251]
This paper collects a comprehensive end-to-end driving dataset named DriveCoT.
It contains sensor data, control decisions, and chain-of-thought labels to indicate the reasoning process.
We propose a baseline model called DriveCoT-Agent, trained on our dataset, to generate chain-of-thought predictions and final decisions.
arXiv Detail & Related papers (2024-03-25T17:59:01Z) - G-MEMP: Gaze-Enhanced Multimodal Ego-Motion Prediction in Driving [71.9040410238973]
We focus on inferring the ego trajectory of a driver's vehicle using their gaze data.
Next, we develop G-MEMP, a novel multimodal ego-trajectory prediction network that combines GPS and video input with gaze data.
The results show that G-MEMP significantly outperforms state-of-the-art methods in both benchmarks.
arXiv Detail & Related papers (2023-12-13T23:06:30Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
Nonobjective driving experience is difficult to model.
In this paper, we propose a FeedBack Loop Network (FBLNet) which attempts to model the driving experience accumulation procedure.
Under the guidance of the incremental knowledge, our model fuses the CNN feature and Transformer feature that are extracted from the input image to predict driver attention.
arXiv Detail & Related papers (2022-12-05T08:25:09Z) - Learning Interactive Driving Policies via Data-driven Simulation [125.97811179463542]
Data-driven simulators promise high data-efficiency for driving policy learning.
Small underlying datasets often lack interesting and challenging edge cases for learning interactive driving.
We propose a simulation method that uses in-painted ado vehicles for learning robust driving policies.
arXiv Detail & Related papers (2021-11-23T20:14:02Z) - Deep Learning Approach for Aggressive Driving Behaviour Detection [1.933681537640272]
This study identifies the timesteps when a driver in different circumstances (rush, mental conflicts, reprisal) begins to drive aggressively.
An observer (real or virtual) is needed to examine driving behaviour to discover aggressive driving occasions.
We overcome this problem by using a smartphone's GPS sensor to detect locations and classify drivers' driving behaviour every three minutes.
arXiv Detail & Related papers (2021-11-08T20:06:16Z) - Markov Switching Model for Driver Behavior Prediction: Use cases on
Smartphones [4.576379639081977]
We present a driver behavior switching model validated by a low-cost data collection solution using smartphones.
The proposed model is validated using a real dataset to predict the driver behavior in short duration periods.
arXiv Detail & Related papers (2021-08-29T09:54:05Z) - Inverse Reinforcement Learning Based Stochastic Driver Behavior Learning [3.4979173592795374]
Drivers have unique and rich driving behaviors when operating vehicles in traffic.
This paper presents a novel driver behavior learning approach that captures the uniqueness and richness of human driver behavior in realistic driving scenarios.
arXiv Detail & Related papers (2021-07-01T20:18:03Z) - Learning Accurate and Human-Like Driving using Semantic Maps and
Attention [152.48143666881418]
This paper investigates how end-to-end driving models can be improved to drive more accurately and human-like.
We exploit semantic and visual maps from HERE Technologies and augment the existing Drive360 dataset with such.
Our models are trained and evaluated on the Drive360 + HERE dataset, which features 60 hours and 3000 km of real-world driving data.
arXiv Detail & Related papers (2020-07-10T22:25:27Z) - Driver Intention Anticipation Based on In-Cabin and Driving Scene
Monitoring [52.557003792696484]
We present a framework for the detection of the drivers' intention based on both in-cabin and traffic scene videos.
Our framework achieves a prediction with the accuracy of 83.98% and F1-score of 84.3%.
arXiv Detail & Related papers (2020-06-20T11:56:32Z) - Mining Personalized Climate Preferences for Assistant Driving [1.6752182911522522]
We propose a novel approach for climate control, driver behavior recognition and driving recommendation for better fitting drivers' preferences in their daily driving.
A prototype using a client-server architecture with an iOS app and an air-quality monitoring sensor has been developed.
Real-world experiments on driving data of 11,370 km (320 hours) by different drivers in multiple cities worldwide have been conducted.
arXiv Detail & Related papers (2020-06-16T00:45:08Z) - Finding manoeuvre motifs in vehicle telematics [3.42658286826597]
A popular way of analysing driving behaviour is to move the focus to the manoeuvres as they give useful information about the driver who is performing them.
In this paper, we investigate a new way of identifying manoeuvres from vehicle telematics data, through motif detection in time-series.
arXiv Detail & Related papers (2020-02-10T23:07:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.