Driver Anomaly Detection: A Dataset and Contrastive Learning Approach
- URL: http://arxiv.org/abs/2009.14660v2
- Date: Mon, 30 Nov 2020 15:00:06 GMT
- Title: Driver Anomaly Detection: A Dataset and Contrastive Learning Approach
- Authors: Okan K\"op\"ukl\"u, Jiapeng Zheng, Hang Xu, Gerhard Rigoll
- Abstract summary: We propose a contrastive learning approach to learn a metric to differentiate normal driving from anomalous driving.
Our method reaches 0.9673 AUC on the test set, demonstrating the effectiveness of the contrastive learning approach on the anomaly detection task.
- Score: 17.020790792750457
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Distracted drivers are more likely to fail to anticipate hazards, which
result in car accidents. Therefore, detecting anomalies in drivers' actions
(i.e., any action deviating from normal driving) contains the utmost importance
to reduce driver-related accidents. However, there are unbounded many anomalous
actions that a driver can do while driving, which leads to an 'open set
recognition' problem. Accordingly, instead of recognizing a set of anomalous
actions that are commonly defined by previous dataset providers, in this work,
we propose a contrastive learning approach to learn a metric to differentiate
normal driving from anomalous driving. For this task, we introduce a new
video-based benchmark, the Driver Anomaly Detection (DAD) dataset, which
contains normal driving videos together with a set of anomalous actions in its
training set. In the test set of the DAD dataset, there are unseen anomalous
actions that still need to be winnowed out from normal driving. Our method
reaches 0.9673 AUC on the test set, demonstrating the effectiveness of the
contrastive learning approach on the anomaly detection task. Our dataset, codes
and pre-trained models are publicly available.
Related papers
- Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection [88.34095233600719]
FAPrompt is a novel framework designed to learn Fine-grained Abnormality Prompts for more accurate ZSAD.
It substantially outperforms state-of-the-art methods by at least 3%-5% AUC/AP in both image- and pixel-level ZSAD tasks.
arXiv Detail & Related papers (2024-10-14T08:41:31Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Anomaly Detection in Driving by Cluster Analysis Twice [0.0]
This study proposes a method namely Anomaly Detection in Driving by Cluster Analysis Twice (ADDCAT)
An event is said to be an anomaly if it never fits with the major cluster, which is considered as the pattern of normality in driving.
This method provides a way to detect anomalies in driving with no prior training processes and huge computational costs needed.
arXiv Detail & Related papers (2022-12-15T09:53:49Z) - FBLNet: FeedBack Loop Network for Driver Attention Prediction [75.83518507463226]
Nonobjective driving experience is difficult to model.
In this paper, we propose a FeedBack Loop Network (FBLNet) which attempts to model the driving experience accumulation procedure.
Under the guidance of the incremental knowledge, our model fuses the CNN feature and Transformer feature that are extracted from the input image to predict driver attention.
arXiv Detail & Related papers (2022-12-05T08:25:09Z) - Driving Anomaly Detection Using Conditional Generative Adversarial
Network [26.45460503638333]
This study proposes an unsupervised method to quantify driving anomalies using a conditional generative adversarial network (GAN)
The approach predicts upcoming driving scenarios by conditioning the models on the previously observed signals.
The results are validated with perceptual evaluations, where annotators are asked to assess the risk and familiarity of the videos detected with high anomaly scores.
arXiv Detail & Related papers (2022-03-15T22:10:01Z) - CODA: A Real-World Road Corner Case Dataset for Object Detection in
Autonomous Driving [117.87070488537334]
We introduce a challenging dataset named CODA that exposes this critical problem of vision-based detectors.
The performance of standard object detectors trained on large-scale autonomous driving datasets significantly drops to no more than 12.8% in mAR.
We experiment with the state-of-the-art open-world object detector and find that it also fails to reliably identify the novel objects in CODA.
arXiv Detail & Related papers (2022-03-15T08:32:56Z) - UBnormal: New Benchmark for Supervised Open-Set Video Anomaly Detection [103.06327681038304]
We propose a supervised open-set benchmark composed of multiple virtual scenes for video anomaly detection.
Unlike existing data sets, we introduce abnormal events annotated at the pixel level at training time.
We show that UBnormal can enhance the performance of a state-of-the-art anomaly detection framework.
arXiv Detail & Related papers (2021-11-16T17:28:46Z) - Deep Learning Approach for Aggressive Driving Behaviour Detection [1.933681537640272]
This study identifies the timesteps when a driver in different circumstances (rush, mental conflicts, reprisal) begins to drive aggressively.
An observer (real or virtual) is needed to examine driving behaviour to discover aggressive driving occasions.
We overcome this problem by using a smartphone's GPS sensor to detect locations and classify drivers' driving behaviour every three minutes.
arXiv Detail & Related papers (2021-11-08T20:06:16Z) - Anomaly Detection in Multi-Agent Trajectories for Automated Driving [2.5211566369910967]
Similar to humans, automated vehicles are supposed to perform anomaly detection.
Our innovation is the ability to jointly learn multiple trajectories of a dynamic number of agents.
arXiv Detail & Related papers (2021-10-15T08:07:31Z) - Modified Supervised Contrastive Learning for Detecting Anomalous Driving
Behaviours [1.4544109317472054]
We formulate this problem as a supervised contrastive learning approach to learn a visual representation to detect normal, and seen and unseen anomalous driving behaviours.
We show our results on a Driver Anomaly Detection dataset that contains 783 minutes of video recordings of normal and anomalous driving behaviours of 31 drivers.
arXiv Detail & Related papers (2021-09-09T03:50:19Z) - Self-trained Deep Ordinal Regression for End-to-End Video Anomaly
Detection [114.9714355807607]
We show that applying self-trained deep ordinal regression to video anomaly detection overcomes two key limitations of existing methods.
We devise an end-to-end trainable video anomaly detection approach that enables joint representation learning and anomaly scoring without manually labeled normal/abnormal data.
arXiv Detail & Related papers (2020-03-15T08:44:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.