論文の概要: Unsupervised Approaches for Out-Of-Distribution Dermoscopic Lesion
Detection
- arxiv url: http://arxiv.org/abs/2111.04807v1
- Date: Mon, 8 Nov 2021 20:22:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-10 15:09:37.194814
- Title: Unsupervised Approaches for Out-Of-Distribution Dermoscopic Lesion
Detection
- Title(参考訳): 鏡視下皮膚病変検出のための教師なしアプローチ
- Authors: Max Torop, Sandesh Ghimire, Wenqian Liu, Dana H. Brooks, Octavia
Camps, Milind Rajadhyaksha, Jennifer Dy, Kivanc Kose
- Abstract要約: SimCLR-LOFは、SimCLRを使って意味のある機能を学び、テストサンプルがOODであるかどうかを評価するためにLOFを使用する。
我々は、SSDと競合する結果と、同じデータに適用された最近の教師付きアプローチを示す。
- 参考スコア(独自算出の注目度): 3.930459638966971
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There are limited works showing the efficacy of unsupervised
Out-of-Distribution (OOD) methods on complex medical data. Here, we present
preliminary findings of our unsupervised OOD detection algorithm, SimCLR-LOF,
as well as a recent state of the art approach (SSD), applied on medical images.
SimCLR-LOF learns semantically meaningful features using SimCLR and uses LOF
for scoring if a test sample is OOD. We evaluated on the multi-source
International Skin Imaging Collaboration (ISIC) 2019 dataset, and show results
that are competitive with SSD as well as with recent supervised approaches
applied on the same data.
- Abstract(参考訳): 複雑な医療データに対するood(unsupervised out-of-distribution)手法の有効性を示す作品は限られている。
そこで本研究では,非教師付きOOD検出アルゴリズムSimCLR-LOFの予備的知見と,医用画像に応用した最近のSSDの現状について述べる。
SimCLR-LOFは、SimCLRを使って意味のある機能を学び、テストサンプルがOODであるかどうかを評価するためにLOFを使用する。
マルチソースISIC(International Skin Imaging Collaboration) 2019データセットについて検討し、SSDと競合する結果と、同じデータに適用された最近の教師付きアプローチを比較した。
関連論文リスト
- Unsupervised Hybrid framework for ANomaly Detection (HAND) -- applied to Screening Mammogram [5.387300498478745]
マンモグラムスクリーニングに使用されるAIモデルの一般化を促進するためには、アウト・オブ・ディストリビューション(OOD)検出が不可欠である。
我々は,大規模デジタル検診マンモグラムからOODを検出する新しいバックボーン,HANDを開発した。
Hand Pipelineは、外部スクリーニングマンモグラムにおけるドメイン固有の品質チェックのための、自動化された効率的な計算ソリューションを提供する。
論文 参考訳(メタデータ) (2024-09-17T20:12:50Z) - Semi-Supervised Relational Contrastive Learning [8.5285439285139]
本稿では,自己教師付きコントラスト損失と一貫性を利用した半教師付き学習モデルを提案する。
我々は,ISIC 2018 Challengeベンチマークの皮膚病変分類を検証し,各種ラベル付きデータに対する本手法の有効性を実証した。
論文 参考訳(メタデータ) (2023-04-11T08:14:30Z) - Robust Semi-Supervised Learning for Histopathology Images through
Self-Supervision Guided Out-of-Distribution Scoring [1.8558180119033003]
本稿では,デジタルヒストロジー画像におけるオープンセット型教師あり学習課題に対処するための新しいパイプラインを提案する。
我々のパイプラインは、自己教師付き学習に基づいて、各未ラベルデータポイントのOODスコアを効率的に推定する。
我々のフレームワークはどんなセミSLフレームワークとも互換性があり、我々の実験は人気のあるMixmatchセミSLフレームワークに基づいています。
論文 参考訳(メタデータ) (2023-03-17T12:38:28Z) - Detecting Out-of-distribution Examples via Class-conditional Impressions
Reappearing [30.938412222724608]
Out-of-Distribution(OOD)検出は、標準のディープニューラルネットワークを拡張して、元のトレーニングデータと異常な入力を区別することを目的としている。
プライバシーとセキュリティのため、補助的なデータは現実のシナリオでは実用的ではない傾向にある。
我々は,C2IR(Class-Conditional Impressions Reappearing)と呼ばれる,自然データに対する訓練を伴わないデータフリー手法を提案する。
論文 参考訳(メタデータ) (2023-03-17T02:55:08Z) - Linking data separation, visual separation, and classifier performance
using pseudo-labeling by contrastive learning [125.99533416395765]
最終分類器の性能は、潜在空間に存在するデータ分離と、射影に存在する視覚的分離に依存すると論じる。
本研究は,ヒト腸管寄生虫の5つの現実的課題の画像データセットを1%の教師付きサンプルで分類し,その結果を実証する。
論文 参考訳(メタデータ) (2023-02-06T10:01:38Z) - Plugin estimators for selective classification with out-of-distribution
detection [67.28226919253214]
現実世界の分類器は、信頼性の低いサンプルの予測を控えることの恩恵を受けることができる。
これらの設定は、選択分類(SC)とアウト・オブ・ディストリビューション(OOD)の検出文献において広範囲に研究されている。
OOD検出による選択分類に関する最近の研究は、これらの問題の統一的な研究を議論している。
本稿では,既存の手法を理論的に基礎づけ,有効かつ一般化したSCOD用プラグイン推定器を提案する。
論文 参考訳(メタデータ) (2023-01-29T07:45:17Z) - DIAGNOSE: Avoiding Out-of-distribution Data using Submodular Information
Measures [13.492292022589918]
類似性と相似性を共同でモデル化できる,新しいアクティブラーニングフレームワークであるDiagnoseを提案する。
本実験は, 医用画像の複数の領域にまたがる最先端AL法に対する診断の優位性を検証するものである。
論文 参考訳(メタデータ) (2022-10-04T11:07:48Z) - Privacy-preserving medical image analysis [53.4844489668116]
医用画像におけるプライバシ保護機械学習(PPML)のためのソフトウェアフレームワークであるPriMIAを提案する。
集合型学習モデルの分類性能は,未発見データセットの人間専門家と比較して有意に良好である。
グラデーションベースのモデル反転攻撃に対するフレームワークのセキュリティを実証的に評価する。
論文 参考訳(メタデータ) (2020-12-10T13:56:00Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
ディープニューラルネットワークを用いた臨床意思決定支援は、着実に関心が高まりつつあるトピックとなっている。
臨床医は、その根底にある意思決定プロセスが不透明で理解しにくいため、この技術の採用をためらうことが多い。
そこで我々は,より小さなデータセットであっても,分類器決定の高品質な可視化を生成するCycleGANアクティベーションに基づく,新たな意思決定手法を提案する。
論文 参考訳(メタデータ) (2020-10-09T14:39:27Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。