An Application of Quantum Machine Learning on Quantum Correlated
Systems: Quantum Convolutional Neural Network as a Classifier for Many-Body
Wavefunctions from the Quantum Variational Eigensolver
- URL: http://arxiv.org/abs/2111.05076v1
- Date: Tue, 9 Nov 2021 12:08:49 GMT
- Title: An Application of Quantum Machine Learning on Quantum Correlated
Systems: Quantum Convolutional Neural Network as a Classifier for Many-Body
Wavefunctions from the Quantum Variational Eigensolver
- Authors: Nathaniel Wrobel, Anshumitra Baul, Juana Moreno, Ka-Ming Tam
- Abstract summary: Recently proposed quantum convolutional neural network (QCNN) provides a new framework for using quantum circuits.
We present here the results from training the QCNN by the wavefunctions of the variational quantum eigensolver for the one-dimensional transverse field Ising model (TFIM)
The QCNN can be trained to predict the corresponding phase of wavefunctions around the putative quantum critical point, even though it is trained by wavefunctions far away from it.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning has been applied on a wide variety of models, from classical
statistical mechanics to quantum strongly correlated systems for the
identification of phase transitions. The recently proposed quantum
convolutional neural network (QCNN) provides a new framework for using quantum
circuits instead of classical neural networks as the backbone of classification
methods. We present here the results from training the QCNN by the
wavefunctions of the variational quantum eigensolver for the one-dimensional
transverse field Ising model (TFIM). We demonstrate that the QCNN identifies
wavefunctions which correspond to the paramagnetic phase and the ferromagnetic
phase of the TFIM with good accuracy. The QCNN can be trained to predict the
corresponding phase of wavefunctions around the putative quantum critical
point, even though it is trained by wavefunctions far away from it. This
provides a basis for exploiting the QCNN to identify the quantum critical
point.
Related papers
- Let the Quantum Creep In: Designing Quantum Neural Network Models by
Gradually Swapping Out Classical Components [1.024113475677323]
Modern AI systems are often built on neural networks.
We propose a framework where classical neural network layers are gradually replaced by quantum layers.
We conduct numerical experiments on image classification datasets to demonstrate the change of performance brought by the systematic introduction of quantum components.
arXiv Detail & Related papers (2024-09-26T07:01:29Z) - Measurement-based quantum machine learning [0.0]
A quantum neural network (QNN) is an object that extends the notion of a classical neural network to quantum models for quantum data.
We propose a universal QNN in this framework which we call the multiple-triangle ansatz (MuTA)
arXiv Detail & Related papers (2024-05-14T05:17:01Z) - Quantum Classical Algorithm for the Study of Phase Transitions in the Hubbard Model via Dynamical Mean-Field Theory [0.0]
We propose a workflow that synergizes quantum computing, many-body theory, and quantum machine learning for studying strongly correlated systems.
We generate a database of zero-temperature wavefunctions of the Hubbard model within the DMFT approximation.
We then use a QML algorithm to distinguish between the metallic phase and the Mott insulator phase to capture the metal-to-Mott insulator phase transition.
arXiv Detail & Related papers (2023-08-02T19:11:04Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - QuCNN : A Quantum Convolutional Neural Network with Entanglement Based
Backpropagation [9.760266670459446]
QuCNN is a parameterised multi-quantum-state based neural network layer computing similarities between each quantum filter state and each quantum data state.
Back propagation can be achieved through a single-ancillabit quantum routine.
validated by applying a convolutional layer with a data state and a filter state over a small subset of MNIST images.
arXiv Detail & Related papers (2022-10-11T13:36:15Z) - Scalable Quantum Neural Networks for Classification [11.839990651381617]
We propose an approach to implementing a scalable quantum neural network (SQNN) by utilizing the quantum resource of multiple small-size quantum devices cooperatively.
In an SQNN system, several quantum devices are used as quantum feature extractors, extracting local features from an input instance in parallel, and a quantum device works as a quantum predictor.
arXiv Detail & Related papers (2022-08-04T20:35:03Z) - QTN-VQC: An End-to-End Learning framework for Quantum Neural Networks [71.14713348443465]
We introduce a trainable quantum tensor network (QTN) for quantum embedding on a variational quantum circuit (VQC)
QTN enables an end-to-end parametric model pipeline, namely QTN-VQC, from the generation of quantum embedding to the output measurement.
Our experiments on the MNIST dataset demonstrate the advantages of QTN for quantum embedding over other quantum embedding approaches.
arXiv Detail & Related papers (2021-10-06T14:44:51Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.