論文の概要: Segmentation of Multiple Myeloma Plasma Cells in Microscopy Images with
Noisy Labels
- arxiv url: http://arxiv.org/abs/2111.05125v1
- Date: Mon, 8 Nov 2021 09:16:23 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-10 15:57:18.821149
- Title: Segmentation of Multiple Myeloma Plasma Cells in Microscopy Images with
Noisy Labels
- Title(参考訳): ノイズラベル顕微鏡画像における多発性骨髄腫プラズマ細胞のセグメンテーション
- Authors: \'Alvaro Garc\'ia Faura, Dejan \v{S}tepec, Toma\v{z}
Martin\v{c}i\v{c}, Danijel Sko\v{c}aj
- Abstract要約: 顕微鏡画像における多発性骨髄腫細胞分画のためのSegPC-2021コンペティションに勝利したソリューションを提示する。
競合データセットで使用されるラベルは半自動生成され、ノイズが提示された。
最先端の特徴抽出器とインスタンスセグメンテーションアーキテクチャを使用しており、平均インターセクションオーバ・ユニオンは0.9389である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A key component towards an improved and fast cancer diagnosis is the
development of computer-assisted tools. In this article, we present the
solution that won the SegPC-2021 competition for the segmentation of multiple
myeloma plasma cells in microscopy images. The labels used in the competition
dataset were generated semi-automatically and presented noise. To deal with it,
a heavy image augmentation procedure was carried out and predictions from
several models were combined using a custom ensemble strategy. State-of-the-art
feature extractors and instance segmentation architectures were used, resulting
in a mean Intersection-over-Union of 0.9389 on the SegPC-2021 final test set.
- Abstract(参考訳): がんの早期診断に向けた重要な要素は、コンピュータ支援ツールの開発である。
本稿では,SegPC-2021コンペティションで獲得した複数の骨髄腫細胞を顕微鏡画像で分割する手法を提案する。
競合データセットで使用されるラベルは半自動生成され、ノイズが提示された。
これに対応するため、重画像拡張処理を行い、いくつかのモデルからの予測をカスタムアンサンブル戦略を用いて組み合わせた。
最先端の特徴抽出器とインスタンスセグメンテーションアーキテクチャが用いられ、segpc-2021の最終テストセットの平均交点オーバー結合は 0.9389 となった。
関連論文リスト
- MedCLIP-SAMv2: Towards Universal Text-Driven Medical Image Segmentation [2.2585213273821716]
MedCLIP-SAMv2はCLIPとSAMモデルを統合して臨床スキャンのセグメンテーションを行う新しいフレームワークである。
提案手法は,DHN-NCE(Decoupled Hard Negative Noise Contrastive Estimation)によるBiomedCLIPモデルの微調整を含む。
また,ゼロショットセグメンテーションラベルを弱教師付きパラダイム内で使用することにより,セグメンテーション品質をさらに向上する。
論文 参考訳(メタデータ) (2024-09-28T23:10:37Z) - TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
本研究では,TotalSegmentatorをMR画像に拡張した。
このデータセットに基づいてnnU-Netセグメンテーションアルゴリズムを訓練し、類似度係数(Dice)を計算し、モデルの性能を評価した。
このモデルは、他の2つの公開セグメンテーションモデル(Dice score 0.824 vs 0.762; p0.001 and 0.762 versus 0.542; p)を大きく上回った。
論文 参考訳(メタデータ) (2024-05-29T20:15:54Z) - MedCLIP-SAM: Bridging Text and Image Towards Universal Medical Image Segmentation [2.2585213273821716]
本稿では,CLIPモデルとSAMモデルを組み合わせて臨床スキャンのセグメンテーションを生成する新しいフレームワーク MedCLIP-SAM を提案する。
3つの多様なセグメンテーションタスクと医用画像モダリティを広範囲にテストすることにより、提案手法は優れた精度を示した。
論文 参考訳(メタデータ) (2024-03-29T15:59:11Z) - Multi-stream Cell Segmentation with Low-level Cues for Multi-modality
Images [66.79688768141814]
我々は,顕微鏡画像のラベル付けを行うセル分類パイプラインを開発した。
次に、分類ラベルに基づいて分類モデルを訓練する。
2種類のセグメンテーションモデルを、丸みを帯びた形状と不規則な形状のセグメンテーションセルに展開する。
論文 参考訳(メタデータ) (2023-10-22T08:11:08Z) - AMIGO: Sparse Multi-Modal Graph Transformer with Shared-Context
Processing for Representation Learning of Giga-pixel Images [53.29794593104923]
本稿では,スライド病理像全体に対する共有コンテキスト処理の新たな概念を提案する。
AMIGOは、組織内のセルラーグラフを使用して、患者に単一の表現を提供する。
我々のモデルは、データの20%以下で同じ性能を達成できる程度に、欠落した情報に対して強い堅牢性を示す。
論文 参考訳(メタデータ) (2023-03-01T23:37:45Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Generative Adversarial Networks for Weakly Supervised Generation and Evaluation of Brain Tumor Segmentations on MR Images [0.0]
本研究は2次元磁気共鳴画像におけるセグメント異常に対する弱教師付きアプローチを示す。
我々は,癌画像を健全な変種に変換するGAN(Generative Adversarial Network)を訓練する。
非共役な変種は、弱監督的な方法で分割を評価するためにも用いられる。
論文 参考訳(メタデータ) (2022-11-10T00:04:46Z) - UNet-2022: Exploring Dynamics in Non-isomorphic Architecture [52.04899592688968]
単純並列化による自己意図と畳み込みの利点を生かした並列非同型ブロックを提案する。
得られたU字型セグメンテーションモデルをUNet-2022と呼ぶ。
実験では、UNet-2022は明らかにレンジセグメンテーションタスクにおいてその性能を上回っている。
論文 参考訳(メタデータ) (2022-10-27T16:00:04Z) - Hybrid guiding: A multi-resolution refinement approach for semantic
segmentation of gigapixel histopathological images [0.7490318169877296]
セマンティックセグメンテーションのための、H2G-Netと呼ばれるカスケード畳み込みニューラルネットワーク設計を提案する。
設計にはパッチワイズ方式による検出段階と、畳み込みオートエンコーダを用いた改良段階が含まれる。
最高の設計は90 WSIの独立したテストセットでDiceスコア0.933を達成した。
論文 参考訳(メタデータ) (2021-12-07T02:31:29Z) - Segmentation of Cellular Patterns in Confocal Images of Melanocytic
Lesions in vivo via a Multiscale Encoder-Decoder Network (MED-Net) [2.0487455621441377]
マルチスケールデコーダネットワーク(MED-Net)は,パターンのクラスに定量的なラベル付けを行う。
メラノサイト病変の117個の反射共焦点顕微鏡(RCM)モザイクの非重畳分割について,本モデルを訓練・試験した。
論文 参考訳(メタデータ) (2020-01-03T22:34:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。