論文の概要: A Differentiable Recipe for Learning Visual Non-Prehensile Planar
Manipulation
- arxiv url: http://arxiv.org/abs/2111.05318v1
- Date: Tue, 9 Nov 2021 18:39:45 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-10 16:19:46.730209
- Title: A Differentiable Recipe for Learning Visual Non-Prehensile Planar
Manipulation
- Title(参考訳): 視覚無理解平面操作学習のための微分可能レシピ
- Authors: Bernardo Aceituno, Alberto Rodriguez, Shubham Tulsiani, Abhinav Gupta,
Mustafa Mukadam
- Abstract要約: 視覚的非包括的平面操作の問題に焦点をあてる。
本稿では,ビデオデコードニューラルモデルと接触力学の先行情報を組み合わせた新しいアーキテクチャを提案する。
モジュラーで完全に差別化可能なアーキテクチャは、目に見えないオブジェクトやモーションの学習専用手法よりも優れていることが分かりました。
- 参考スコア(独自算出の注目度): 63.1610540170754
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Specifying tasks with videos is a powerful technique towards acquiring novel
and general robot skills. However, reasoning over mechanics and dexterous
interactions can make it challenging to scale learning contact-rich
manipulation. In this work, we focus on the problem of visual non-prehensile
planar manipulation: given a video of an object in planar motion, find
contact-aware robot actions that reproduce the same object motion. We propose a
novel architecture, Differentiable Learning for Manipulation (\ours), that
combines video decoding neural models with priors from contact mechanics by
leveraging differentiable optimization and finite difference based simulation.
Through extensive simulated experiments, we investigate the interplay between
traditional model-based techniques and modern deep learning approaches. We find
that our modular and fully differentiable architecture performs better than
learning-only methods on unseen objects and motions.
\url{https://github.com/baceituno/dlm}.
- Abstract(参考訳): ビデオでタスクを特定することは、新規で一般的なロボットスキルを取得するための強力なテクニックである。
しかし、メカニクスや巧妙な相互作用の推論は、コンタクトリッチな操作の学習を難しくする。
本研究では、平面運動中の物体のビデオから、同じ物体の動きを再現する接触認識ロボット動作を見つけるという、視覚的非包括的平面操作の問題に焦点を当てる。
本稿では,微分可能最適化と有限差分に基づくシミュレーションを利用して,ビデオデコードニューラルモデルと接触力学の先行情報を組み合わせた新しいアーキテクチャである微分可能制御学習(\ours)を提案する。
シミュレーション実験を通じて,従来のモデルベース手法と現代のディープラーニング手法の相互作用について検討する。
モジュラーで完全に微分可能なアーキテクチャは、未知のオブジェクトや動きの学習のみの方法よりも優れていることが分かりました。
https://github.com/baceituno/dlm}
関連論文リスト
- Grasp Anything: Combining Teacher-Augmented Policy Gradient Learning with Instance Segmentation to Grasp Arbitrary Objects [18.342569823885864]
TAPG(Teacher-Augmented Policy Gradient)は、強化学習と政策蒸留を統括する新しい2段階学習フレームワークである。
TAPGは、オブジェクトセグメンテーションに基づいて、誘導的かつ適応的でありながら、センセータポリシーの学習を促進する。
トレーニングされたポリシーは、シミュレーションにおける散らかったシナリオや、人間の理解可能なプロンプトに基づいて現実世界から、多種多様なオブジェクトを順応的に把握する。
論文 参考訳(メタデータ) (2024-03-15T10:48:16Z) - DexDeform: Dexterous Deformable Object Manipulation with Human
Demonstrations and Differentiable Physics [97.75188532559952]
人間の実演から巧妙な操作スキルを抽象化する原理的枠組みを提案する。
次に、イマジネーションにおけるアクション抽象化を計画する上で、デモを使ってスキルモデルをトレーニングします。
提案手法の有効性を評価するために,6つの難解な変形可能なオブジェクト操作タスクの組を導入する。
論文 参考訳(メタデータ) (2023-03-27T17:59:49Z) - Learning Reward Functions for Robotic Manipulation by Observing Humans [92.30657414416527]
我々は、ロボット操作ポリシーのタスク非依存報酬関数を学習するために、幅広い操作タスクを解く人間のラベル付きビデオを使用する。
学習された報酬は、タイムコントラストの目的を用いて学習した埋め込み空間におけるゴールまでの距離に基づいている。
論文 参考訳(メタデータ) (2022-11-16T16:26:48Z) - Learning Object Manipulation Skills from Video via Approximate
Differentiable Physics [27.923004421974156]
我々はロボットに、単一のビデオデモを見て、シンプルなオブジェクト操作タスクを実行するように教える。
識別可能なシーンは、3Dシーンと2Dビデオの間の知覚的忠実性を保証する。
我々は,54のデモ映像からなる3次元再構成作業に対するアプローチを評価した。
論文 参考訳(メタデータ) (2022-08-03T10:21:47Z) - Learning Generalizable Dexterous Manipulation from Human Grasp
Affordance [11.060931225148936]
マルチフィンガーハンドによる有害な操作は、ロボット工学における最も難しい問題の1つだ。
模倣学習の最近の進歩は、強化学習と比較してサンプル効率を大幅に改善した。
本稿では,様々な3Dオブジェクトをカテゴリ内に配置した大規模実演を用いて,デクスタラスな操作を学習することを提案する。
論文 参考訳(メタデータ) (2022-04-05T16:26:22Z) - DexMV: Imitation Learning for Dexterous Manipulation from Human Videos [11.470141313103465]
本稿では,コンピュータビジョンとロボット学習のギャップを埋めるために,新しいプラットフォームとパイプラインであるDexMVを提案する。
i)多指ロボットハンドによる複雑な操作タスクのシミュレーションシステムと,(ii)人間の手による大規模な実演を記録するコンピュータビジョンシステムとを設計する。
実演ではロボット学習を大きなマージンで改善することができ、強化学習だけでは解決できない複雑なタスクを解決できることが示される。
論文 参考訳(メタデータ) (2021-08-12T17:51:18Z) - Model-Based Visual Planning with Self-Supervised Functional Distances [104.83979811803466]
モデルに基づく視覚的目標達成のための自己監視手法を提案する。
私たちのアプローチは、オフラインでラベルなしのデータを使って完全に学習します。
このアプローチは,モデルフリーとモデルベース先行手法の両方で大幅に性能が向上することがわかった。
論文 参考訳(メタデータ) (2020-12-30T23:59:09Z) - Learning Object Manipulation Skills via Approximate State Estimation
from Real Videos [47.958512470724926]
人間は、いくつかの指導ビデオを見て、新しいタスクを学ぶことに精通しています。
一方、新しいアクションを学習するロボットは、試行錯誤によって多くの労力を必要とするか、あるいは入手が困難な専門家によるデモを使う必要がある。
本稿では,ビデオから直接オブジェクト操作スキルを学習する手法について検討する。
論文 参考訳(メタデータ) (2020-11-13T08:53:47Z) - Visual Imitation Made Easy [102.36509665008732]
本稿では,ロボットへのデータ転送を容易にしながら,データ収集プロセスを単純化する,模倣のための代替インターフェースを提案する。
我々は、データ収集装置やロボットのエンドエフェクターとして、市販のリーチ・グラブラー補助具を使用する。
我々は,非包括的プッシュと包括的積み重ねという2つの課題について実験的に評価した。
論文 参考訳(メタデータ) (2020-08-11T17:58:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。