Quadratic improvement on accuracy of approximating pure quantum states
and unitary gates by probabilistic implementation
- URL: http://arxiv.org/abs/2111.05531v4
- Date: Thu, 3 Feb 2022 15:22:37 GMT
- Title: Quadratic improvement on accuracy of approximating pure quantum states
and unitary gates by probabilistic implementation
- Authors: Seiseki Akibue, Go Kato, Seiichiro Tani
- Abstract summary: We show that a probabilistic encoding halves the bit length required for "deterministic" ones.
We also show that the accuracy of approximating pure states by using a given subset of pure states can be increased quadratically.
- Score: 2.1485350418225244
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pure quantum states are often approximately encoded as classical bit strings
such as those representing probability amplitudes and those describing circuits
that generate the quantum states. The crucial quantity is the minimum length of
classical bit strings from which the original pure states are approximately
reconstructible. We derive asymptotically tight bounds on the minimum bit
length required for probabilistic encodings with which one can approximately
reconstruct the original pure state as an ensemble of the quantum states
encoded in classical strings. We also show that such a probabilistic encoding
asymptotically halves the bit length required for "deterministic" ones. This is
based on the fact that the accuracy of approximating pure states by using a
given subset of pure states can be increased quadratically if we use ensembles
of pure states in the subset. Moreover, we show that a similar fact holds when
we consider the approximation of unitary gates by using a given subset of
unitary gates. This improves the reduction rate of the circuit size by using
probabilistic circuit synthesis compared to previous results. This also
demonstrates that the reduction is possible even for low-accuracy circuit
synthesis, which might improve the accuracy of various NISQ algorithms.
Related papers
- Matrix encoding method in variational quantum singular value decomposition [49.494595696663524]
Conditional measurement is involved to avoid small success probability in ancilla measurement.
The objective function for the algorithm can be obtained probabilistically via measurement of the state of a one-qubit subsystem.
arXiv Detail & Related papers (2025-03-19T07:01:38Z) - Quantum State Preparation Circuit Optimization Exploiting Don't Cares [6.158168913938158]
Quantum state preparation initializes the quantum registers and is essential for running quantum algorithms.
Existing methods synthesize an initial circuit and leverage compilers to reduce the circuit's gate count.
We introduce a peephole optimization algorithm that identifies such unitaries for replacement in the original circuit.
arXiv Detail & Related papers (2024-09-02T18:40:42Z) - T-Count Optimizing Genetic Algorithm for Quantum State Preparation [0.05999777817331316]
We present and utilize a genetic algorithm for state preparation circuits consisting of gates from the Clifford + T gate set.
Our algorithm does automatically generate fault tolerantly implementable solutions where the number of the most error prone components is reduced.
arXiv Detail & Related papers (2024-06-06T12:26:14Z) - Compilation of algorithm-specific graph states for quantum circuits [55.90903601048249]
We present a quantum circuit compiler that prepares an algorithm-specific graph state from quantum circuits described in high level languages.
The computation can then be implemented using a series of non-Pauli measurements on this graph state.
arXiv Detail & Related papers (2022-09-15T14:52:31Z) - Approximate encoding of quantum states using shallow circuits [0.0]
A common requirement of quantum simulations and algorithms is the preparation of complex states through sequences of 2-qubit gates.
Here, we aim at creating an approximate encoding of the target state using a limited number of gates.
Our work offers a universal method to prepare target states using local gates and represents a significant improvement over known strategies.
arXiv Detail & Related papers (2022-06-30T18:00:04Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Automatic quantum circuit encoding of a given arbitrary quantum state [0.0]
We propose a quantum-classical hybrid algorithm to encode a given arbitrarily quantum state onto an optimal quantum circuit.
The proposed algorithm employs as an objective function the absolute value of fidelity $F = langle 0 vert hatmathcalCdagger vert Psi rangle$.
We experimentally demonstrate that a quantum circuit generated by the AQCE algorithm can indeed represent the original quantum state reasonably on a noisy real quantum device.
arXiv Detail & Related papers (2021-12-29T12:33:41Z) - K-sparse Pure State Tomography with Phase Estimation [1.2183405753834557]
Quantum state tomography (QST) for reconstructing pure states requires exponentially increasing resources and measurements with the number of qubits.
QST reconstruction for any pure state composed of the superposition of $K$ different computational basis states of $n$bits in a specific measurement set-up is presented.
arXiv Detail & Related papers (2021-11-08T09:43:12Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Random quantum circuits anti-concentrate in log depth [118.18170052022323]
We study the number of gates needed for the distribution over measurement outcomes for typical circuit instances to be anti-concentrated.
Our definition of anti-concentration is that the expected collision probability is only a constant factor larger than if the distribution were uniform.
In both the case where the gates are nearest-neighbor on a 1D ring and the case where gates are long-range, we show $O(n log(n)) gates are also sufficient.
arXiv Detail & Related papers (2020-11-24T18:44:57Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.