Important Sentence Identification in Legal Cases Using Multi-Class
Classification
- URL: http://arxiv.org/abs/2111.05721v1
- Date: Wed, 10 Nov 2021 14:58:29 GMT
- Title: Important Sentence Identification in Legal Cases Using Multi-Class
Classification
- Authors: Sahan Jayasinghe, Lakith Rambukkanage, Ashan Silva, Nisansa de Silva,
Amal Shehan Perera
- Abstract summary: This research explores the usage of sentence embeddings for multi-class classification to identify important sentences in a legal case.
A task-specific loss function is defined in order to improve the accuracy restricted by the straightforward use of categorical cross entropy loss.
- Score: 0.1499944454332829
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advancement of Natural Language Processing (NLP) is spreading through
various domains in forms of practical applications and academic interests.
Inherently, the legal domain contains a vast amount of data in text format.
Therefore it requires the application of NLP to cater to the analytically
demanding needs of the domain. Identifying important sentences, facts and
arguments in a legal case is such a tedious task for legal professionals. In
this research we explore the usage of sentence embeddings for multi-class
classification to identify important sentences in a legal case, in the
perspective of the main parties present in the case. In addition, a
task-specific loss function is defined in order to improve the accuracy
restricted by the straightforward use of categorical cross entropy loss.
Related papers
- LawLLM: Law Large Language Model for the US Legal System [43.13850456765944]
We introduce the Law Large Language Model (LawLLM), a multi-task model specifically designed for the US legal domain.
LawLLM excels at Similar Case Retrieval (SCR), Precedent Case Recommendation (PCR), and Legal Judgment Prediction (LJP)
We propose customized data preprocessing techniques for each task that transform raw legal data into a trainable format.
arXiv Detail & Related papers (2024-07-27T21:51:30Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
We introduce DELTA, a discriminative model designed for legal case retrieval.
We leverage shallow decoders to create information bottlenecks, aiming to enhance the representation ability.
Our approach can outperform existing state-of-the-art methods in legal case retrieval.
arXiv Detail & Related papers (2024-03-27T10:40:14Z) - CiteCaseLAW: Citation Worthiness Detection in Caselaw for Legal
Assistive Writing [44.75251805925605]
We introduce a labeled dataset of 178M sentences for citation-worthiness detection in the legal domain from the Caselaw Access Project (CAP)
The performance of various deep learning models was examined on this novel dataset.
The domain-specific pre-trained model tends to outperform other models, with an 88% F1-score for the citation-worthiness detection task.
arXiv Detail & Related papers (2023-05-03T04:20:56Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
Legal case retrieval plays a core role in the intelligent legal system.
Most existing language models have difficulty understanding the long-distance dependencies between different structures.
We propose a new Structure-Aware pre-traIned language model for LEgal case Retrieval.
arXiv Detail & Related papers (2023-04-22T10:47:01Z) - Exploiting Contrastive Learning and Numerical Evidence for Confusing
Legal Judgment Prediction [46.71918729837462]
Given the fact description text of a legal case, legal judgment prediction aims to predict the case's charge, law article and penalty term.
Previous studies fail to distinguish different classification errors with a standard cross-entropy classification loss.
We propose a moco-based supervised contrastive learning to learn distinguishable representations.
We further enhance the representation of the fact description with extracted crime amounts which are encoded by a pre-trained numeracy model.
arXiv Detail & Related papers (2022-11-15T15:53:56Z) - Legal Element-oriented Modeling with Multi-view Contrastive Learning for
Legal Case Retrieval [3.909749182759558]
We propose an interaction-focused network for legal case retrieval with a multi-view contrastive learning objective.
Case-view contrastive learning minimizes the hidden space distance between relevant legal case representations.
We employ a legal element knowledge-aware indicator to detect legal elements of cases.
arXiv Detail & Related papers (2022-10-11T06:47:23Z) - Fine-grained Intent Classification in the Legal Domain [2.088409822555567]
We introduce a dataset of 93 legal documents, belonging to the case categories of either Murder, Land Dispute, Robbery, or Corruption.
We annotate fine-grained intents for each such phrase to enable a deeper understanding of the case for a reader.
We analyze the performance of several transformer-based models in automating the process of extracting intent phrases.
arXiv Detail & Related papers (2022-05-06T23:57:17Z) - A Principled Design of Image Representation: Towards Forensic Tasks [75.40968680537544]
We investigate the forensic-oriented image representation as a distinct problem, from the perspectives of theory, implementation, and application.
At the theoretical level, we propose a new representation framework for forensics, called Dense Invariant Representation (DIR), which is characterized by stable description with mathematical guarantees.
We demonstrate the above arguments on the dense-domain pattern detection and matching experiments, providing comparison results with state-of-the-art descriptors.
arXiv Detail & Related papers (2022-03-02T07:46:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.