論文の概要: Multimodal Approach for Metadata Extraction from German Scientific
Publications
- arxiv url: http://arxiv.org/abs/2111.05736v1
- Date: Wed, 10 Nov 2021 15:19:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-11 15:55:29.046114
- Title: Multimodal Approach for Metadata Extraction from German Scientific
Publications
- Title(参考訳): ドイツ科学誌からのメタデータ抽出のためのマルチモーダルアプローチ
- Authors: Azeddine Bouabdallah, Jorge Gavilan, Jennifer Gerbl and Prayuth
Patumcharoenpol
- Abstract要約: ドイツ語の科学論文からメタデータを抽出するための多モーダル深層学習手法を提案する。
本稿では,自然言語処理と画像ビジョン処理を組み合わせることで,複数の入力データについて考察する。
提案手法は,約8800の文書からなるデータセットを用いて学習し,F1スコアの0.923を得ることができた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nowadays, metadata information is often given by the authors themselves upon
submission. However, a significant part of already existing research papers
have missing or incomplete metadata information. German scientific papers come
in a large variety of layouts which makes the extraction of metadata a
non-trivial task that requires a precise way to classify the metadata extracted
from the documents. In this paper, we propose a multimodal deep learning
approach for metadata extraction from scientific papers in the German language.
We consider multiple types of input data by combining natural language
processing and image vision processing. This model aims to increase the overall
accuracy of metadata extraction compared to other state-of-the-art approaches.
It enables the utilization of both spatial and contextual features in order to
achieve a more reliable extraction. Our model for this approach was trained on
a dataset consisting of around 8800 documents and is able to obtain an overall
F1-score of 0.923.
- Abstract(参考訳): 今日では、メタデータ情報は著者自身によって提出されることが多い。
しかし、既存の研究論文の大部分は、メタデータ情報の欠如や不完全なものである。
ドイツの科学論文には、メタデータの抽出を文書から抽出したメタデータの正確な分類方法を必要とする非自明なタスクとする、多種多様なレイアウトがある。
本稿では,ドイツ語の論文からメタデータを抽出するためのマルチモーダル深層学習手法を提案する。
自然言語処理と画像ビジョン処理を組み合わせることで,複数種類の入力データを考える。
このモデルは,他の最先端手法と比較して,メタデータ抽出の全体的な精度を向上させることを目的としている。
より信頼性の高い抽出を実現するために、空間的特徴と文脈的特徴の両方を活用することができる。
提案手法は,約8800の文書からなるデータセットを用いて学習し,F1スコアの0.923を得ることができた。
関連論文リスト
- Diffusion Models as Data Mining Tools [87.77999285241219]
本稿では、画像合成のために訓練された生成モデルを視覚データマイニングのツールとして利用する方法について述べる。
特定のデータセットから画像を合成するために条件拡散モデルを微調整した後、これらのモデルを用いて典型性尺度を定義することができることを示す。
この尺度は、地理的位置、タイムスタンプ、セマンティックラベル、さらには病気の存在など、異なるデータラベルに対する典型的な視覚的要素がどのように存在するかを評価する。
論文 参考訳(メタデータ) (2024-07-20T17:14:31Z) - Using Large Language Models to Enrich the Documentation of Datasets for Machine Learning [1.8270184406083445]
大規模言語モデル(LLM)を用いて,文書から次元を自動的に抽出する戦略について検討する。
当社のアプローチは、データパブリッシャや実践者がマシン可読なドキュメントを作成するのに役立ちます。
我々は、我々のアプローチを実装するオープンソースツールと、実験のコードと結果を含むレプリケーションパッケージをリリースした。
論文 参考訳(メタデータ) (2024-04-04T10:09:28Z) - Non-Parametric Memory Guidance for Multi-Document Summarization [0.0]
本稿では,非パラメトリックメモリと組み合わせたレトリバー誘導モデルを提案する。
このモデルはデータベースから関連する候補を検索し、その候補をコピー機構とソースドキュメントで考慮して要約を生成する。
本手法は,学術論文を含むMultiXScienceデータセットを用いて評価する。
論文 参考訳(メタデータ) (2023-11-14T07:41:48Z) - Interactive Distillation of Large Single-Topic Corpora of Scientific
Papers [1.2954493726326113]
より堅牢だが時間を要するアプローチは、主題の専門家が文書を手書きするデータセットを構成的に構築することである。
ここでは,学術文献のターゲットデータセットを構築的に生成するための,機械学習に基づく新しいツールを紹介する。
論文 参考訳(メタデータ) (2023-09-19T17:18:36Z) - Making Metadata More FAIR Using Large Language Models [2.61630828688114]
この作業では、メタデータを比較するFAIRMetaTextと呼ばれる自然言語処理(NLP)情報を提供する。
特に、FAIRMetaTextはメタデータの自然言語記述を分析し、2項間の数学的類似度尺度を提供する。
このソフトウェアは、同じトピックに関するいくつかの実験データセットを使用しながら、さまざまな自然言語メタデータを精査する際の人的労力を大幅に削減することができる。
論文 参考訳(メタデータ) (2023-07-24T19:14:38Z) - infoVerse: A Universal Framework for Dataset Characterization with
Multidimensional Meta-information [68.76707843019886]
infoVerseは、データセットの特徴付けのための普遍的なフレームワークである。
infoVerseは、様々なモデル駆動メタ情報を統合することで、データセットの多次元特性をキャプチャする。
実世界の3つのアプリケーション(データプルーニング、アクティブラーニング、データアノテーション)において、infoVerse空間で選択されたサンプルは、強いベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2023-05-30T18:12:48Z) - Modeling Entities as Semantic Points for Visual Information Extraction
in the Wild [55.91783742370978]
文書画像から鍵情報を正確かつ堅牢に抽出する手法を提案する。
我々は、エンティティを意味的ポイントとして明示的にモデル化する。つまり、エンティティの中心点は、異なるエンティティの属性と関係を記述する意味情報によって豊かになる。
提案手法は,従来の最先端モデルと比較して,エンティティラベルとリンクの性能を著しく向上させることができる。
論文 参考訳(メタデータ) (2023-03-23T08:21:16Z) - TRIE++: Towards End-to-End Information Extraction from Visually Rich
Documents [51.744527199305445]
本稿では,視覚的にリッチな文書からエンド・ツー・エンドの情報抽出フレームワークを提案する。
テキスト読み出しと情報抽出は、よく設計されたマルチモーダルコンテキストブロックを介して互いに強化することができる。
フレームワークはエンドツーエンドのトレーニング可能な方法でトレーニングでき、グローバルな最適化が達成できる。
論文 参考訳(メタデータ) (2022-07-14T08:52:07Z) - Combining Feature and Instance Attribution to Detect Artifacts [62.63504976810927]
トレーニングデータアーティファクトの識別を容易にする手法を提案する。
提案手法は,トレーニングデータのアーティファクトの発見に有効であることを示す。
我々は,これらの手法が実際にNLP研究者にとって有用かどうかを評価するために,小規模なユーザスタディを実施している。
論文 参考訳(メタデータ) (2021-07-01T09:26:13Z) - MexPub: Deep Transfer Learning for Metadata Extraction from German
Publications [1.1549572298362785]
本稿では,PDF文書を画像として見ることにより,異なるレイアウトやスタイルでメタデータを抽出する手法を提案する。
提案手法は, 各種PDF文書からメタデータを正確に抽出する能力を検証し, 平均90%の精度を達成した。
論文 参考訳(メタデータ) (2021-06-04T09:43:48Z) - Scaling Systematic Literature Reviews with Machine Learning Pipelines [57.82662094602138]
体系的なレビューは、科学的文書からデータを抽出する。
これらの側面をそれぞれ自動化するパイプラインを構築し、多くの人間時間対システム品質トレードオフを実験します。
人間の専門的アノテーションの2週間だけで、パイプラインシステム全体の驚くほどの精度と一般性が得られることが分かりました。
論文 参考訳(メタデータ) (2020-10-09T16:19:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。