Comparison of the semiclassical and quantum optical field dynamics in a
pulse-excited optical cavity with a finite number of quantum emitters
- URL: http://arxiv.org/abs/2111.06286v1
- Date: Thu, 11 Nov 2021 15:56:17 GMT
- Title: Comparison of the semiclassical and quantum optical field dynamics in a
pulse-excited optical cavity with a finite number of quantum emitters
- Authors: K. J\"urgens and F. Lengers and D. Groll and D. E. Reiter and D.
Wigger and T. Kuhn
- Abstract summary: We study the spectral and temporal response of a set of $N$ quantum emitters embedded in a photonic cavity.
Wigner functions of the light mode are calculated for different scenarios to analyze the quantum state of the light field.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The spectral and temporal response of a set of $N$ quantum emitters embedded
in a photonic cavity is studied. Quantum mechanically, such systems can be
described by the Tavis-Cummings (TC) model of $N$ two-level systems coupled to
a single light mode. Here we compare the full quantum solution of the TC model
for different numbers of quantum emitters with its semiclassical limit after a
pulsed excitation of the cavity mode. Considering different pulse amplitudes,
we find that the spectra obtained from the TC model approach the semiclassical
one for an increasing number of emitters $N$. Furthermore they match very well
for small pulse amplitudes. While we observe a very good agreement in the
temporal dynamics for photon numbers much smaller than $N$, considerable
deviations occur in the regime of photon numbers similar to or larger than $N$,
which are linked to collapse and revival phenomena. Wigner functions of the
light mode are calculated for different scenarios to analyze the quantum state
of the light field. We find strong deviations from a coherent state even if the
dynamics of the expectation values are still well described by the
semiclassical limit. For higher pulse amplitudes Wigner functions similar to
those of Schr\"odinger cat states between two or more quasi-coherent
contributions build up.
Related papers
- Quantum correlations enhanced in hybrid optomechanical system via phase tuning [0.0]
This work presents a theoretical framework for enhancing quantum correlations in a hybrid double-cavity optomechanical system.
We find that tuning the phase $phi$ is essential for maximizing photon-phonon entanglement.
arXiv Detail & Related papers (2024-10-13T14:11:07Z) - Entanglement of photonic modes from a continuously driven two-level system [34.50067763557076]
We experimentally generate entangled photonic modes by continuously exciting a quantum emitter, a superconducting qubit, with a coherent drive.
We show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum.
Our approach can be utilized to distribute entanglement at a high rate in various physical platforms.
arXiv Detail & Related papers (2024-07-10T18:48:41Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Beyond-adiabatic Quantum Admittance of a Semiconductor Quantum Dot at High Frequencies: Rethinking Reflectometry as Polaron Dynamics [0.0]
We develop a self-consistent quantum master equation formalism to obtain the admittance of a quantum dot tunnel-coupled to a charge reservoir.
We describe two new photon-mediated regimes: Floquet broadening, determined by the dressing of the QD states, and broadening determined by photon loss in the system.
arXiv Detail & Related papers (2023-07-31T14:46:43Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Experimental Realization and Characterization of Stabilized Pair
Coherent States [4.486044407450978]
PCS is an interesting class of non-Gaussian continuous-variable entangled state.
PCS is at the heart of a promising quantum error correction code: the pair cat code.
We report an experimental demonstration of the pair coherent state of microwave photons in two superconducting cavities.
arXiv Detail & Related papers (2022-09-23T15:24:25Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
No class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory.
Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons.
This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.
arXiv Detail & Related papers (2022-05-26T16:33:51Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Weakly invasive metrology: quantum advantage and physical
implementations [0.0]
We show that arbitrarily intense coherent states can obtain information at a rate that scales at most linearly with $N_rm abs$ and $T$.
We discuss an implementation in cavity QED, where Fock states are both prepared and measured by coupling atomic ensembles to the cavities.
arXiv Detail & Related papers (2020-06-22T10:14:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.