Related Work on Image Quality Assessment
- URL: http://arxiv.org/abs/2111.06291v1
- Date: Thu, 11 Nov 2021 16:11:27 GMT
- Title: Related Work on Image Quality Assessment
- Authors: Dongxu Wang
- Abstract summary: Image quality assessment (IQA) plays a vital role in image-based applications.
This article will review the state-of-the-art image quality assessment algorithms.
- Score: 0.103341388090561
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to the existence of quality degradations introduced in various stages of
visual signal acquisition, compression, transmission and display, image quality
assessment (IQA) plays a vital role in image-based applications. According to
whether the reference image is complete and available, image quality evaluation
can be divided into three categories: Full-Reference(FR), Reduced-
Reference(RR), and Non- Reference(NR). This article will review the
state-of-the-art image quality assessment algorithms.
Related papers
- Rank-based No-reference Quality Assessment for Face Swapping [88.53827937914038]
The metric of measuring the quality in most face swapping methods relies on several distances between the manipulated images and the source image.
We present a novel no-reference image quality assessment (NR-IQA) method specifically designed for face swapping.
arXiv Detail & Related papers (2024-06-04T01:36:29Z) - Dual-Branch Network for Portrait Image Quality Assessment [76.27716058987251]
We introduce a dual-branch network for portrait image quality assessment (PIQA)
We utilize two backbone networks (textiti.e., Swin Transformer-B) to extract the quality-aware features from the entire portrait image and the facial image cropped from it.
We leverage LIQE, an image scene classification and quality assessment model, to capture the quality-aware and scene-specific features as the auxiliary features.
arXiv Detail & Related papers (2024-05-14T12:43:43Z) - Compressed image quality assessment using stacking [4.971244477217376]
Generalization can be regarded as the major challenge in compressed image quality assessment.
Both semantic and low-level information are employed in the presented IQA to predict the human visual system.
The accuracy of the quality benchmark of the clic2024 perceptual image challenge was achieved 79.6%.
arXiv Detail & Related papers (2024-02-01T20:12:26Z) - BAND-2k: Banding Artifact Noticeable Database for Banding Detection and
Quality Assessment [52.1640725073183]
Banding, also known as staircase-like contours, frequently occurs in flat areas of images/videos processed by the compression or quantization algorithms.
We build the largest banding IQA database so far, named Banding Artifact Noticeable Database (BAND-2k), which consists of 2,000 banding images.
A dual convolutional neural network is employed to concurrently learn the feature representation from the high-frequency and low-frequency maps.
arXiv Detail & Related papers (2023-11-29T15:56:31Z) - UNO-QA: An Unsupervised Anomaly-Aware Framework with Test-Time
Clustering for OCTA Image Quality Assessment [4.901218498977952]
We propose an unsupervised anomaly-aware framework with test-time clustering for optical coherence tomography angiography ( OCTA) image quality assessment.
A feature-embedding-based low-quality representation module is proposed to quantify the quality of OCTA images.
We perform dimension reduction and clustering of multi-scale image features extracted by the trained OCTA quality representation network.
arXiv Detail & Related papers (2022-12-20T18:48:04Z) - Confusing Image Quality Assessment: Towards Better Augmented Reality
Experience [96.29124666702566]
We consider AR technology as the superimposition of virtual scenes and real scenes, and introduce visual confusion as its basic theory.
A ConFusing Image Quality Assessment (CFIQA) database is established, which includes 600 reference images and 300 distorted images generated by mixing reference images in pairs.
An objective metric termed CFIQA is also proposed to better evaluate the confusing image quality.
arXiv Detail & Related papers (2022-04-11T07:03:06Z) - Non-Reference Quality Monitoring of Digital Images using Gradient
Statistics and Feedforward Neural Networks [0.1657441317977376]
A non-reference quality metric is proposed to assess the quality of digital images.
The proposed metric is computationally faster than its counterparts and can be used for the quality assessment of image sequences.
arXiv Detail & Related papers (2021-12-27T20:21:55Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
We train a deep Convolutional Neural Network (CNN) using a contrastive pairwise objective to solve the auxiliary problem.
We show through extensive experiments that CONTRIQUE achieves competitive performance when compared to state-of-the-art NR image quality models.
Our results suggest that powerful quality representations with perceptual relevance can be obtained without requiring large labeled subjective image quality datasets.
arXiv Detail & Related papers (2021-10-25T21:01:00Z) - A survey on IQA [0.0]
This article will review the concepts and metrics of image quality assessment and also video quality assessment.
It briefly introduce some methods of full-reference and semi-reference image quality assessment, and focus on the non-reference image quality assessment methods based on deep learning.
arXiv Detail & Related papers (2021-08-29T10:52:27Z) - Learning Conditional Knowledge Distillation for Degraded-Reference Image
Quality Assessment [157.1292674649519]
We propose a practical solution named degraded-reference IQA (DR-IQA)
DR-IQA exploits the inputs of IR models, degraded images, as references.
Our results can even be close to the performance of full-reference settings.
arXiv Detail & Related papers (2021-08-18T02:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.