Full Characterization of Adaptively Strong Majority Voting in Crowdsourcing
- URL: http://arxiv.org/abs/2111.06390v3
- Date: Thu, 25 Apr 2024 18:31:35 GMT
- Title: Full Characterization of Adaptively Strong Majority Voting in Crowdsourcing
- Authors: Margarita Boyarskaya, Panos Ipeirotis,
- Abstract summary: In crowdsourcing, quality control is commonly achieved by having workers examine items and vote on their correctness.
To minimize the impact of unreliable worker responses, a $delta$-margin voting process is utilized.
Our research presents a modeling approach using absorbing Markov chains to analyze the characteristics of this voting process.
- Score: 0.5831737970661138
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In crowdsourcing, quality control is commonly achieved by having workers examine items and vote on their correctness. To minimize the impact of unreliable worker responses, a $\delta$-margin voting process is utilized, where additional votes are solicited until a predetermined threshold $\delta$ for agreement between workers is exceeded. The process is widely adopted but only as a heuristic. Our research presents a modeling approach using absorbing Markov chains to analyze the characteristics of this voting process that matter in crowdsourced processes. We provide closed-form equations for the quality of resulting consensus vote, the expected number of votes required for consensus, the variance of vote requirements, and other distribution moments. Our findings demonstrate how the threshold $\delta$ can be adjusted to achieve quality equivalence across voting processes that employ workers with varying accuracy levels. We also provide efficiency-equalizing payment rates for voting processes with different expected response accuracy levels. Additionally, our model considers items with varying degrees of difficulty and uncertainty about the difficulty of each example. Our simulations, using real-world crowdsourced vote data, validate the effectiveness of our theoretical model in characterizing the consensus aggregation process. The results of our study can be effectively employed in practical crowdsourcing applications.
Related papers
- Extracting Clean and Balanced Subset for Noisy Long-tailed Classification [66.47809135771698]
We develop a novel pseudo labeling method using class prototypes from the perspective of distribution matching.
By setting a manually-specific probability measure, we can reduce the side-effects of noisy and long-tailed data simultaneously.
Our method can extract this class-balanced subset with clean labels, which brings effective performance gains for long-tailed classification with label noise.
arXiv Detail & Related papers (2024-04-10T07:34:37Z) - Employing Universal Voting Schemes for Improved Visual Place Recognition Performance [16.242139178368923]
This paper analyses several voting schemes to maximise the place detection accuracy of a VPR ensemble set up.
We take inspiration from a variety of voting schemes that are widely employed in fields such as politics and sociology.
arXiv Detail & Related papers (2024-03-08T14:19:14Z) - The Decisive Power of Indecision: Low-Variance Risk-Limiting Audits and Election Contestation via Marginal Mark Recording [51.82772358241505]
Risk-limiting audits (RLAs) are techniques for verifying the outcomes of large elections.
We define new families of audits that improve efficiency and offer advances in statistical power.
New audits are enabled by revisiting the standard notion of a cast-vote record so that it can declare multiple possible mark interpretations.
arXiv Detail & Related papers (2024-02-09T16:23:54Z) - Evaluating the Fairness of Discriminative Foundation Models in Computer
Vision [51.176061115977774]
We propose a novel taxonomy for bias evaluation of discriminative foundation models, such as Contrastive Language-Pretraining (CLIP)
We then systematically evaluate existing methods for mitigating bias in these models with respect to our taxonomy.
Specifically, we evaluate OpenAI's CLIP and OpenCLIP models for key applications, such as zero-shot classification, image retrieval and image captioning.
arXiv Detail & Related papers (2023-10-18T10:32:39Z) - Fair Classifiers that Abstain without Harm [24.90899074869189]
In critical applications, it is vital for classifiers to defer decision-making to humans.
We propose a post-hoc method that makes existing classifiers selectively abstain from predicting certain samples.
Our framework outperforms existing methods in terms of fairness disparity without sacrificing accuracy at similar abstention rates.
arXiv Detail & Related papers (2023-10-09T23:07:28Z) - Fairly Allocating Utility in Constrained Multiwinner Elections [0.0]
A common denominator to ensure fairness across all such contexts is the use of constraints.
Across these contexts, the candidates selected to satisfy the given constraints may systematically lead to unfair outcomes for historically disadvantaged voter populations.
We develop a model to select candidates that satisfy the constraints fairly across voter populations.
arXiv Detail & Related papers (2022-11-23T10:04:26Z) - Neighborhood Collective Estimation for Noisy Label Identification and
Correction [92.20697827784426]
Learning with noisy labels (LNL) aims at designing strategies to improve model performance and generalization by mitigating the effects of model overfitting to noisy labels.
Recent advances employ the predicted label distributions of individual samples to perform noise verification and noisy label correction, easily giving rise to confirmation bias.
We propose Neighborhood Collective Estimation, in which the predictive reliability of a candidate sample is re-estimated by contrasting it against its feature-space nearest neighbors.
arXiv Detail & Related papers (2022-08-05T14:47:22Z) - Fairness in Selection Problems with Strategic Candidates [9.4148805532663]
We study how the strategic aspect affects fairness in selection problems.
A population of rational candidates compete by choosing an effort level to increase their quality.
We characterize the (unique) equilibrium of this game in the different parameters' regimes.
arXiv Detail & Related papers (2022-05-24T17:03:32Z) - Using Sampling to Estimate and Improve Performance of Automated Scoring
Systems with Guarantees [63.62448343531963]
We propose a combination of the existing paradigms, sampling responses to be scored by humans intelligently.
We observe significant gains in accuracy (19.80% increase on average) and quadratic weighted kappa (QWK) (25.60% on average) with a relatively small human budget.
arXiv Detail & Related papers (2021-11-17T05:00:51Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
We estimate and exploit the credibility of the assigned pseudo-label of each sample to alleviate the influence of noisy labels.
Our uncertainty-guided optimization brings significant improvement and achieves the state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2020-12-16T04:09:04Z) - Modeling Voters in Multi-Winner Approval Voting [24.002910959494923]
We study voting behavior in single-winner and multi-winner approval voting scenarios with varying degrees of uncertainty.
We find that people generally manipulate their vote to obtain a better outcome, but often do not identify the optimal manipulation.
We propose a novel model that takes into account the size of the winning set and human cognitive constraints.
arXiv Detail & Related papers (2020-12-04T19:24:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.