論文の概要: Catalytic Role Of Noise And Necessity Of Inductive Biases In The
Emergence Of Compositional Communication
- arxiv url: http://arxiv.org/abs/2111.06464v1
- Date: Thu, 11 Nov 2021 21:15:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-15 13:03:26.347027
- Title: Catalytic Role Of Noise And Necessity Of Inductive Biases In The
Emergence Of Compositional Communication
- Title(参考訳): 合成コミュニケーションの創発における騒音の触媒的役割と誘導バイアスの必要性
- Authors: {\L}ukasz Kuci\'nski, Tomasz Korbak, Pawe{\l} Ko{\l}odziej, Piotr
Mi{\l}o\'s
- Abstract要約: 本稿では,学習フレームワークとデータの両方に対する帰納的バイアスが,構成的コミュニケーションの発達に必要であることを示す。
エージェントがノイズチャネル上で通信するシグナリングゲームにおいて,構成性が自然に発生することを実証する。
- 参考スコア(独自算出の注目度): 1.1470070927586016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Communication is compositional if complex signals can be represented as a
combination of simpler subparts. In this paper, we theoretically show that
inductive biases on both the training framework and the data are needed to
develop a compositional communication. Moreover, we prove that compositionality
spontaneously arises in the signaling games, where agents communicate over a
noisy channel. We experimentally confirm that a range of noise levels, which
depends on the model and the data, indeed promotes compositionality. Finally,
we provide a comprehensive study of this dependence and report results in terms
of recently studied compositionality metrics: topographical similarity,
conflict count, and context independence.
- Abstract(参考訳): 複雑な信号が単純な部分の組合せとして表現できるならば、通信は構成的である。
本稿では,学習フレームワークとデータの両方に対する帰納的バイアスが,構成的コミュニケーションの発達に必要であることを示す。
さらに,エージェントがノイズチャネル上で通信するシグナリングゲームにおいて,構成性が自然に発生することを示す。
モデルとデータに依存する様々なノイズレベルが、実際に構成性を促進することを実験的に確認する。
最後に,この依存度に関する包括的研究を行い,最近研究した構成性指標(地形的類似性,競合数,文脈独立性)について報告する。
関連論文リスト
- Learning Disentangled Speech Representations [0.412484724941528]
SynSpeechは、非絡み合った音声表現の研究を可能にするために設計された、新しい大規模合成音声データセットである。
本稿では, 線形探索と教師付きアンタングル化指標を併用して, アンタングル化表現学習手法を評価する枠組みを提案する。
SynSpeechは、さまざまな要因のベンチマークを促進し、ジェンダーや話し方のようなより単純な機能の切り離しを期待できると同時に、話者アイデンティティのような複雑な属性を分離する際の課題を強調します。
論文 参考訳(メタデータ) (2023-11-04T04:54:17Z) - Transcending the Attention Paradigm: Representation Learning from
Geospatial Social Media Data [1.8311821879979955]
本研究では,分散パターンの源泉としてソーシャルメディアデータを調べることで,パフォーマンスベンチマークのパラダイムに挑戦する。
これらの抽象的関係を適切に表現するために、この研究では、経験的ソーシャルメディアコーパスを要素成分に分解し、人口密度の場所をまたいだ20億以上のツイートを分析した。
論文 参考訳(メタデータ) (2023-10-09T03:27:05Z) - Learning Complete Topology-Aware Correlations Between Relations for Inductive Link Prediction [121.65152276851619]
関係性間の意味的相関は本質的にエッジレベルとエンティティ非依存であることを示す。
本研究では,関係関係のトポロジ・アウェア・コレレーションをモデル化するための新しいサブグラフベース手法,TACOを提案する。
RCNのポテンシャルをさらに活用するために, 完全コモンニアインダストリアルサブグラフを提案する。
論文 参考訳(メタデータ) (2023-09-20T08:11:58Z) - Inducing Causal Structure for Abstractive Text Summarization [76.1000380429553]
要約データの因果構造を誘導する構造因果モデル(SCM)を導入する。
本稿では因果的要因を模倣できる因果的表現を学習するための因果性インスピレーション付き系列列列モデル(CI-Seq2Seq)を提案する。
2つの広く使われているテキスト要約データセットの実験結果は、我々のアプローチの利点を示している。
論文 参考訳(メタデータ) (2023-08-24T16:06:36Z) - Inductive Bias for Emergent Communication in a Continuous Setting [0.0]
マルチエージェント強化学習環境における創発的コミュニケーションについて検討する。
連続メッセージのための優れた通信プロトコルの出現を支援するために、誘導バイアスを導入する。
論文 参考訳(メタデータ) (2023-06-06T16:15:56Z) - Semantic-Native Communication: A Simplicial Complex Perspective [50.099494681671224]
トポロジカル空間の観点から意味コミュニケーションを研究する。
送信機はまずデータを$k$の単純複素数にマッピングし、その高次相関を学習する。
受信機は構造を復号し、行方不明または歪んだデータを推測する。
論文 参考訳(メタデータ) (2022-10-30T22:33:44Z) - Towards Disentangled Speech Representations [65.7834494783044]
本研究では, ASR と TTS の合同モデリングに基づく表現学習タスクを構築する。
本研究は,その部分の音声信号と,その部分の音声信号とをアンタングルする音声表現を学習することを目的とする。
我々は,これらの特性をトレーニング中に強化することにより,WERを平均24.5%向上させることを示す。
論文 参考訳(メタデータ) (2022-08-28T10:03:55Z) - On Neural Architecture Inductive Biases for Relational Tasks [76.18938462270503]
合成ネットワーク一般化(CoRelNet)と呼ばれる類似度分布スコアに基づく簡単なアーキテクチャを導入する。
単純なアーキテクチャの選択は、分布外一般化において既存のモデルより優れていることが分かる。
論文 参考訳(メタデータ) (2022-06-09T16:24:01Z) - Word Interdependence Exposes How LSTMs Compose Representations [18.34617849764921]
NLPにおける最近の研究は、LSTM言語モデルが言語データの構成構造を捉えていることを示している。
LSTMにおける単語の意味間の相互依存度を,内部ゲートでの相互作用に基づく新しい尺度として提示する。
論文 参考訳(メタデータ) (2020-04-27T21:48:08Z) - Relabel the Noise: Joint Extraction of Entities and Relations via
Cooperative Multiagents [52.55119217982361]
協調型マルチエージェント群を用いて,雑音の多いインスタンスを処理するための共同抽出手法を提案する。
ノイズの多いインスタンスをきめ細かな方法で処理するために、協調グループの各エージェントは、自身の視点で連続的な信頼スコアを算出してインスタンスを評価する。
信頼度コンセンサスモジュールは、すべてのエージェントの知恵を収集し、信頼度ラベル付きラベルでノイズの多いトレーニングセットを再分割するように設計されている。
論文 参考訳(メタデータ) (2020-04-21T12:03:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。