論文の概要: Variational Auto-Encoder Architectures that Excel at Causal Inference
- arxiv url: http://arxiv.org/abs/2111.06486v1
- Date: Thu, 11 Nov 2021 22:37:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-15 13:02:41.689398
- Title: Variational Auto-Encoder Architectures that Excel at Causal Inference
- Title(参考訳): Excelの因果推論における変分オートエンコーダアーキテクチャ
- Authors: Negar Hassanpour, Russell Greiner
- Abstract要約: 観測データから因果効果を推定することは、多くの種類の決定を下す上で重要である。
この課題に対処する1つのアプローチは、データの基礎となる要素の分解された表現を学習することである。
本稿では,変分オートエンコーダの最近の進歩を基盤とした生成的アプローチを提案する。
- 参考スコア(独自算出の注目度): 26.731576721694648
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating causal effects from observational data (at either an individual --
or a population -- level) is critical for making many types of decisions. One
approach to address this task is to learn decomposed representations of the
underlying factors of data; this becomes significantly more challenging when
there are confounding factors (which influence both the cause and the effect).
In this paper, we take a generative approach that builds on the recent advances
in Variational Auto-Encoders to simultaneously learn those underlying factors
as well as the causal effects. We propose a progressive sequence of models,
where each improves over the previous one, culminating in the Hybrid model. Our
empirical results demonstrate that the performance of all three proposed models
are superior to both state-of-the-art discriminative as well as other
generative approaches in the literature.
- Abstract(参考訳): 観察データ(個人または人口レベル)から因果効果を推定することは、多くのタイプの意思決定に不可欠である。
この課題に対処する1つのアプローチは、データの基礎となる要因の分解された表現を学習することである。
本稿では,近年の変分オートエンコーダの進歩に基づく生成的アプローチを用いて,これらの要因と因果効果を同時に学習する。
本稿では,前モデルよりもそれぞれが改良され,ハイブリッドモデルに到達したモデル系列を提案する。
以上の結果から,提案する3つのモデルの性能は,最先端の判別法および他の生成的手法よりも優れていることが示された。
関連論文リスト
- DAG-aware Transformer for Causal Effect Estimation [0.8192907805418583]
因果推論は、医療、経済学、社会科学などの分野における重要な課題である。
本稿では,これらの課題を克服する因果推論のためのトランスフォーマーを用いた新しい手法を提案する。
我々のモデルの中核となる革新は、注意機構に直接因果非巡回グラフ(DAG)を統合することである。
論文 参考訳(メタデータ) (2024-10-13T23:17:58Z) - A Study on Bias Detection and Classification in Natural Language Processing [2.908482270923597]
我々の研究の目的は、ヘイトスピーチの検出と分類のタスクにおいて、公開データセットをもっとうまく組み合わせてモデルを訓練する方法を決定することである。
我々は,これらの課題を実験の展開と合わせて議論し,異なるデータセットの組み合わせがモデルの性能に大きな影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2024-08-14T11:49:24Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
因果表現学習は、観測された低レベルデータから潜在的な高レベル因果表現を明らかにすることを目的としている。
主な課題の1つは、識別可能性(identifiability)として知られるこれらの潜伏因果モデルを特定する信頼性の高い保証を提供することである。
論文 参考訳(メタデータ) (2023-10-24T07:46:10Z) - Towards Causal Foundation Model: on Duality between Causal Inference and Attention [18.046388712804042]
治療効果推定のための因果認識基盤モデルの構築に向けて第一歩を踏み出す。
我々はCInA(Causal Inference with Attention)と呼ばれる新しい理論的に正当化された手法を提案する。
論文 参考訳(メタデータ) (2023-10-01T22:28:34Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
我々はマルコフモデルとセミマルコフモデルの急激な変分を分解するツールを開発する。
突発効果の非パラメトリック分解を可能にする最初の結果を証明する。
説明可能なAIや公平なAIから、疫学や医学における疑問まで、いくつかの応用がある。
論文 参考訳(メタデータ) (2023-06-08T09:40:28Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
自動対物生成は、生成した対物インスタンスのいくつかの側面を考慮すべきである。
本稿では, 対実例生成のための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2022-05-20T15:02:53Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
本稿では,3つの潜伏変数群からなる動的過程として,運動予測の因果的形式化を導入する。
我々は、因果グラフを近似するために、不変なメカニズムやスタイルの共創者の表現を分解するモジュラーアーキテクチャを考案する。
合成および実データを用いた実験結果から,提案した3つの成分は,学習した動き表現の頑健性と再利用性を大幅に向上することが示された。
論文 参考訳(メタデータ) (2021-11-29T18:59:09Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
同様の性能を実現するモデルセットに対して,予測公正性を特徴付けるフレームワークを開発する。
到達可能なグループレベルの予測格差の範囲を計算するためのトラクタブルアルゴリズムを提供します。
選択ラベル付きデータの実証的な課題に対処するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2021-01-02T02:11:37Z) - A Critical View of the Structural Causal Model [89.43277111586258]
相互作用を全く考慮せずに原因と効果を識別できることが示される。
本稿では,因果モデルの絡み合った構造を模倣する新たな逆行訓練法を提案する。
我々の多次元手法は, 合成および実世界の両方のデータセットにおいて, 文献的手法よりも優れている。
論文 参考訳(メタデータ) (2020-02-23T22:52:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。