論文の概要: Bi-Discriminator Class-Conditional Tabular GAN
- arxiv url: http://arxiv.org/abs/2111.06549v1
- Date: Fri, 12 Nov 2021 03:31:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-15 14:19:46.141977
- Title: Bi-Discriminator Class-Conditional Tabular GAN
- Title(参考訳): Bi-Discriminator Class-Conditional Tabular GAN
- Authors: Mohammad Esmaeilpour, Nourhene Chaalia, Adel Abusitta, Francois-Xavier
Devailly, Wissem Maazoun, Patrick Cardinal
- Abstract要約: 本稿では,連続列,二項列,離散列を含むデータセットを合成する二分法GANを提案する。
4つのベンチマーク公開データセットに対する実験結果は、GANの優れたパフォーマンスを裏付けるものである。
- 参考スコア(独自算出の注目度): 5.429166489331484
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper introduces a bi-discriminator GAN for synthesizing tabular
datasets containing continuous, binary, and discrete columns. Our proposed
approach employs an adapted preprocessing scheme and a novel conditional term
for the generator network to more effectively capture the input sample
distributions. Additionally, we implement straightforward yet effective
architectures for discriminator networks aiming at providing more
discriminative gradient information to the generator. Our experimental results
on four benchmarking public datasets corroborates the superior performance of
our GAN both in terms of likelihood fitness metric and machine learning
efficacy.
- Abstract(参考訳): 本稿では,連続列,二項列,離散列を含む表層データセットを合成する二分法GANを提案する。
提案手法では, 入力サンプル分布をより効果的に捉えるために, 適応前処理方式と, ジェネレータネットワークの新しい条件項を用いる。
さらに,より差別的な勾配情報の提供を目的とした識別器ネットワークに対して,簡易かつ効果的なアーキテクチャを実装した。
4つのベンチマーク公開データセットに対する実験結果は、適合度測定と機械学習の有効性の両面で、GANの優れた性能を裏付けるものである。
関連論文リスト
- Combating Mode Collapse in GANs via Manifold Entropy Estimation [70.06639443446545]
Generative Adversarial Networks (GAN) は、様々なタスクやアプリケーションにおいて魅力的な結果を示している。
GANのモード崩壊問題に対処するための新しいトレーニングパイプラインを提案する。
論文 参考訳(メタデータ) (2022-08-25T12:33:31Z) - Training a Bidirectional GAN-based One-Class Classifier for Network
Intrusion Detection [8.158224495708978]
既存の生成逆数ネットワーク(GAN)は、主に実物から合成サンプルを作成するために使用される。
提案手法では,Bidirectional GAN (Bi-GAN) に基づく一級分類器として,訓練されたエンコーダ識別器を構築した。
実験結果から,提案手法はネットワーク侵入検出タスクにおいて有効であることが示唆された。
論文 参考訳(メタデータ) (2022-02-02T23:51:11Z) - Multi-Fake Evolutionary Generative Adversarial Networks for Imbalance
Hyperspectral Image Classification [7.9067022260826265]
本稿では,不均衡なハイパースペクトル画像分類を扱うために,新しいマルチフェイク進化生成逆数ネットワークを提案する。
ジェネレータネットワークの分類性能を向上させるため、ジェネレータネットワークでは異なる生成目標損失が考慮される。
提案手法の有効性を2つの超スペクトル空間スペクトルデータセットを用いて検証した。
論文 参考訳(メタデータ) (2021-11-07T07:29:24Z) - cGANs with Auxiliary Discriminative Classifier [43.78253518292111]
条件付き生成モデルは、データとラベルの基本的な結合分布を学習することを目的としている。
副分類器生成敵ネットワーク (AC-GAN) は広く用いられているが, 生成標本のクラス内多様性の低い問題に悩まされている。
本稿では,AC-GANの問題に対処するため,補助識別器(ADC-GAN)を用いた新しいcGANを提案する。
論文 参考訳(メタデータ) (2021-07-21T13:06:32Z) - MCL-GAN: Generative Adversarial Networks with Multiple Specialized Discriminators [47.19216713803009]
本稿では,複数の識別器を用いた生成対向ネットワークの枠組みを提案する。
データ全体のサブセットに専門知識を持つように、各差別者を指導します。
複数の識別器を使用するにもかかわらず、バックボーンネットワークは識別器間で共有される。
論文 参考訳(メタデータ) (2021-07-15T11:35:08Z) - Are conditional GANs explicitly conditional? [0.0]
本稿では,条件付きジェネレーティブ・アドバイザリ・ネットワーク(cGAN)に対する2つのコントリビューションを提案する。
最初の主な貢献は、cGANの分析であり、それらが明示的に条件付きでないことを示すものである。
第2のコントリビューションは、アコントラリオと呼ばれる新しい手法であり、敵アーキテクチャの両部分の条件性を明示的にモデル化する。
論文 参考訳(メタデータ) (2021-06-28T22:49:27Z) - EC-GAN: Low-Sample Classification using Semi-Supervised Algorithms and
GANs [0.0]
ラベル付きデータによる分類などの画像解析タスクを可能にするため,半教師付き学習が注目されている。
半教師付き分類にgans(generative adrial network)を用いる一般的なアルゴリズムは、分類と識別のための単一のアーキテクチャを共有している。
これにより、各タスクごとに別々のデータ分散に収束するモデルが必要になり、全体的なパフォーマンスが低下する可能性がある。
完全教師付きタスクの分類を改善するために,GANと半教師付きアルゴリズムを用いた新しいGANモデルであるECGANを提案する。
論文 参考訳(メタデータ) (2020-12-26T05:58:00Z) - Improving Generative Adversarial Networks with Local Coordinate Coding [150.24880482480455]
GAN(Generative Adversarial Network)は、事前定義された事前分布から現実的なデータを生成することに成功している。
実際には、意味情報はデータから学んだ潜在的な分布によって表現される。
ローカル座標符号化(LCC)を用いたLCCGANモデルを提案する。
論文 参考訳(メタデータ) (2020-07-28T09:17:50Z) - Classify and Generate Reciprocally: Simultaneous Positive-Unlabelled
Learning and Conditional Generation with Extra Data [77.31213472792088]
クラスラベルデータの不足は、多くの機械学習問題において、ユビキタスなボトルネックとなっている。
本稿では, 正負ラベル付き(PU)分類と, 余分なラベル付きデータによる条件生成を活用することで, この問題に対処する。
本稿では,PU分類と条件生成を併用した新たなトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-14T08:27:40Z) - Discriminator Contrastive Divergence: Semi-Amortized Generative Modeling
by Exploring Energy of the Discriminator [85.68825725223873]
GAN(Generative Adversarial Networks)は、高次元データのモデリングにおいて大きな可能性を秘めている。
本稿では,WGANの識別器の特性を活かした識別器コントラストの多様性について紹介する。
我々は、合成データと実世界の画像生成ベンチマークの両方において、大幅に改善された生成の利点を実証する。
論文 参考訳(メタデータ) (2020-04-05T01:50:16Z) - Your GAN is Secretly an Energy-based Model and You Should use
Discriminator Driven Latent Sampling [106.68533003806276]
本研究では,潜時空間におけるサンプリングは,潜時空間の前対数密度と判別器出力スコアの和によって誘導されるエネルギーベースモデルに従って,潜時空間におけるサンプリングを行うことによって達成できることを示す。
判別器駆動潜時サンプリング(DDLS)は,高次元画素空間で動作する従来の手法と比較して,高効率であることを示す。
論文 参考訳(メタデータ) (2020-03-12T23:33:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。