論文の概要: Multi-Fake Evolutionary Generative Adversarial Networks for Imbalance
Hyperspectral Image Classification
- arxiv url: http://arxiv.org/abs/2111.04019v2
- Date: Mon, 20 Mar 2023 06:26:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-24 05:40:05.402232
- Title: Multi-Fake Evolutionary Generative Adversarial Networks for Imbalance
Hyperspectral Image Classification
- Title(参考訳): 不均衡ハイパースペクトル画像分類のためのマルチフェイク進化的逆ネットワーク
- Authors: Tanmoy Dam, Nidhi Swami, Sreenatha G. Anavatti, Hussein A. Abbass
- Abstract要約: 本稿では,不均衡なハイパースペクトル画像分類を扱うために,新しいマルチフェイク進化生成逆数ネットワークを提案する。
ジェネレータネットワークの分類性能を向上させるため、ジェネレータネットワークでは異なる生成目標損失が考慮される。
提案手法の有効性を2つの超スペクトル空間スペクトルデータセットを用いて検証した。
- 参考スコア(独自算出の注目度): 7.9067022260826265
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel multi-fake evolutionary generative adversarial
network(MFEGAN) for handling imbalance hyperspectral image classification. It
is an end-to-end approach in which different generative objective losses are
considered in the generator network to improve the classification performance
of the discriminator network. Thus, the same discriminator network has been
used as a standard classifier by embedding the classifier network on top of the
discriminating function. The effectiveness of the proposed method has been
validated through two hyperspectral spatial-spectral data sets. The same
generative and discriminator architectures have been utilized with two
different GAN objectives for a fair performance comparison with the proposed
method. It is observed from the experimental validations that the proposed
method outperforms the state-of-the-art methods with better classification
performance.
- Abstract(参考訳): 本稿では、不均衡な高スペクトル画像分類を扱うために、MFEGAN(Multi-fake Evolution Generative Adversarial Network)を提案する。
これは、識別器ネットワークの分類性能を向上させるために、ジェネレータネットワークにおいて異なる生成目的の損失を考慮するエンドツーエンドのアプローチである。
これにより、識別関数の上に分類器ネットワークを埋め込むことにより、同じ判別器ネットワークを標準分類器として用いることができる。
提案手法の有効性を2つの超スペクトル空間スペクトルデータセットを用いて検証した。
同じ生成的および識別的アーキテクチャを2つの異なるGAN目標を用いて,提案手法と同等の性能比較を行った。
実験により,提案手法は最先端の手法よりも優れた分類性能を有することを示した。
関連論文リスト
- Multi-Class Anomaly Detection based on Regularized Discriminative
Coupled hypersphere-based Feature Adaptation [85.15324009378344]
本稿では,修正正規化識別変分オートエンコーダ(RD-VAE)によって得られたクラス識別特性を特徴抽出プロセスに組み込んだ新しいモデルを提案する。
提案した正規化識別型超球型特徴適応(RD-CFA)は,多クラス異常検出のための解である。
論文 参考訳(メタデータ) (2023-11-24T14:26:07Z) - Bi-discriminator Domain Adversarial Neural Networks with Class-Level
Gradient Alignment [87.8301166955305]
そこで本研究では,クラスレベルのアライメントアライメントを有するバイディミネータドメイン対向ニューラルネットワークを提案する。
BACGは、領域分布の整合性を改善するために勾配信号と二階確率推定を利用する。
さらに、対照的な学習にインスパイアされ、トレーニングプロセスを大幅に短縮できるメモリバンクベースの変種であるFast-BACGを開発した。
論文 参考訳(メタデータ) (2023-10-21T09:53:17Z) - Convolutional autoencoder-based multimodal one-class classification [80.52334952912808]
1クラス分類は、単一のクラスからのデータを用いた学習のアプローチを指す。
マルチモーダルデータに適した深層学習一クラス分類法を提案する。
論文 参考訳(メタデータ) (2023-09-25T12:31:18Z) - Fine-grained Recognition with Learnable Semantic Data Augmentation [68.48892326854494]
きめ細かい画像認識は、長年続くコンピュータビジョンの課題である。
本稿では,識別領域損失問題を軽減するため,特徴レベルのトレーニングデータを多様化することを提案する。
本手法は,いくつかの人気分類ネットワーク上での一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2023-09-01T11:15:50Z) - Hierarchical Forgery Classifier On Multi-modality Face Forgery Clues [61.37306431455152]
我々は,HFC-MFFD (hierarchical Forgery for Multi-modality Face Forgery Detection) を提案する。
HFC-MFFDは、マルチモーダルシナリオにおけるフォージェリー認証を強化するために、堅牢なパッチベースのハイブリッド表現を学習する。
クラス不均衡問題を緩和し、さらに検出性能を高めるために、特定の階層的な顔偽造を提案する。
論文 参考訳(メタデータ) (2022-12-30T10:54:29Z) - Ensemble Classifier Design Tuned to Dataset Characteristics for Network
Intrusion Detection [0.0]
データセットのクラスオーバーラップ問題に対処する2つの新しいアルゴリズムが提案されている。
提案手法は二進分類と多進分類の両方で評価される。
論文 参考訳(メタデータ) (2022-05-08T21:06:42Z) - Training a Bidirectional GAN-based One-Class Classifier for Network
Intrusion Detection [8.158224495708978]
既存の生成逆数ネットワーク(GAN)は、主に実物から合成サンプルを作成するために使用される。
提案手法では,Bidirectional GAN (Bi-GAN) に基づく一級分類器として,訓練されたエンコーダ識別器を構築した。
実験結果から,提案手法はネットワーク侵入検出タスクにおいて有効であることが示唆された。
論文 参考訳(メタデータ) (2022-02-02T23:51:11Z) - Discriminative Attribution from Counterfactuals [64.94009515033984]
本稿では,特徴属性と反実的説明を組み合わせたニューラルネットワークの解釈可能性について述べる。
本手法は,特徴属性法の性能を客観的に評価するために有効であることを示す。
論文 参考訳(メタデータ) (2021-09-28T00:53:34Z) - Discriminative-Generative Representation Learning for One-Class Anomaly
Detection [22.500931323372303]
生成法と識別法を組み合わせた自己教師型学習フレームワークを提案する。
提案手法は,複数のベンチマークデータセットにおいて,最先端の処理性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-07-27T11:46:15Z) - A Multiple Classifier Approach for Concatenate-Designed Neural Networks [13.017053017670467]
私たちは、ネットワークセット間で生成された特徴を収集する分類器の設計を与えます。
我々はL2正規化法を用いて、Softmax Denseの代わりに分類スコアを得る。
その結果、提案された分類器は実験ケースの精度を向上させることができる。
論文 参考訳(メタデータ) (2021-01-14T04:32:40Z) - The Projected Belief Network Classfier : both Generative and
Discriminative [13.554038901140949]
射影信頼ネットワーク (PBN) は、抽出可能な可能性関数を持つ層状生成ネットワークである。
本稿では,完全識別性と完全生成性を有する畳み込み型PBNを構築した。
論文 参考訳(メタデータ) (2020-08-14T16:00:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。