Implicit vs Unfolded Graph Neural Networks
- URL: http://arxiv.org/abs/2111.06592v3
- Date: Mon, 19 May 2025 20:29:44 GMT
- Title: Implicit vs Unfolded Graph Neural Networks
- Authors: Yongyi Yang, Tang Liu, Yangkun Wang, Zengfeng Huang, David Wipf,
- Abstract summary: We show that implicit and unfolded GNNs can achieve strong node classification accuracy across disparate regimes.<n>While IGNN is substantially more memory-efficient, UGNN models support unique, integrated graph attention mechanisms and propagation rules.
- Score: 29.803948965931212
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It has been observed that message-passing graph neural networks (GNN) sometimes struggle to maintain a healthy balance between the efficient/scalable modeling of long-range dependencies across nodes while avoiding unintended consequences such oversmoothed node representations, sensitivity to spurious edges, or inadequate model interpretability. To address these and other issues, two separate strategies have recently been proposed, namely implicit and unfolded GNNs (that we abbreviate to IGNN and UGNN respectively). The former treats node representations as the fixed points of a deep equilibrium model that can efficiently facilitate arbitrary implicit propagation across the graph with a fixed memory footprint. In contrast, the latter involves treating graph propagation as unfolded descent iterations as applied to some graph-regularized energy function. While motivated differently, in this paper we carefully quantify explicit situations where the solutions they produce are equivalent and others where their properties sharply diverge. This includes the analysis of convergence, representational capacity, and interpretability. In support of this analysis, we also provide empirical head-to-head comparisons across multiple synthetic and public real-world node classification benchmarks. These results indicate that while IGNN is substantially more memory-efficient, UGNN models support unique, integrated graph attention mechanisms and propagation rules that can achieve strong node classification accuracy across disparate regimes such as adversarially-perturbed graphs, graphs with heterophily, and graphs involving long-range dependencies.
Related papers
- Oversmoothing as Loss of Sign: Towards Structural Balance in Graph Neural Networks [54.62268052283014]
Oversmoothing is a common issue in graph neural networks (GNNs)
Three major classes of anti-oversmoothing techniques can be mathematically interpreted as message passing over signed graphs.
Negative edges can repel nodes to a certain extent, providing deeper insights into how these methods mitigate oversmoothing.
arXiv Detail & Related papers (2025-02-17T03:25:36Z) - Conditional Distribution Learning on Graphs [15.730933577970687]
We propose a conditional distribution learning (CDL) method that learns graph representations from graph-structured data for semisupervised graph classification.<n>Specifically, we present an end-to-end graph representation learning model to align the conditional distributions of weakly and strongly augmented features over the original features.
arXiv Detail & Related papers (2024-11-20T07:26:36Z) - SF-GNN: Self Filter for Message Lossless Propagation in Deep Graph Neural Network [38.669815079957566]
Graph Neural Network (GNN) with the main idea of encoding graph structure information of graphs by propagation and aggregation has developed rapidly.
It achieved excellent performance in representation learning of multiple types of graphs such as homogeneous graphs, heterogeneous graphs, and more complex graphs like knowledge graphs.
For the phenomenon of performance degradation in deep GNNs, we propose a new perspective.
arXiv Detail & Related papers (2024-07-03T02:40:39Z) - Universally Robust Graph Neural Networks by Preserving Neighbor
Similarity [5.660584039688214]
We introduce a novel robust model termed NSPGNN which incorporates a dual-kNN graphs pipeline to supervise the neighbor similarity-guided propagation.
Experiments on both homophilic and heterophilic graphs validate the universal robustness of NSPGNN compared to the state-of-the-art methods.
arXiv Detail & Related papers (2024-01-18T06:57:29Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - A Fractional Graph Laplacian Approach to Oversmoothing [15.795926248847026]
We generalize the concept of oversmoothing from undirected to directed graphs.
We propose fractional graph Laplacian neural ODEs, which describe non-local dynamics.
Our method is more flexible with respect to the convergence of the graph's Dirichlet energy, thereby mitigating oversmoothing.
arXiv Detail & Related papers (2023-05-22T14:52:33Z) - A Non-Asymptotic Analysis of Oversmoothing in Graph Neural Networks [33.35609077417775]
We characterize the mechanism behind the phenomenon via a non-asymptotic analysis.
We show that oversmoothing happens once the mixing effect starts to dominate the denoising effect.
Our results suggest that while PPR mitigates oversmoothing at deeper layers, PPR-based architectures still achieve their best performance at a shallow depth.
arXiv Detail & Related papers (2022-12-21T00:33:59Z) - Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation [60.50994154879244]
Recent studies show that Graph Neural Networks are vulnerable and easily fooled by small perturbations.
In this work, we focus on the emerging but critical attack, namely, Graph Injection Attack.
We propose a general defense framework CHAGNN against GIA through cooperative homophilous augmentation of graph data and model.
arXiv Detail & Related papers (2022-11-15T11:44:31Z) - MGNNI: Multiscale Graph Neural Networks with Implicit Layers [53.75421430520501]
implicit graph neural networks (GNNs) have been proposed to capture long-range dependencies in underlying graphs.
We introduce and justify two weaknesses of implicit GNNs: the constrained expressiveness due to their limited effective range for capturing long-range dependencies, and their lack of ability to capture multiscale information on graphs at multiple resolutions.
We propose a multiscale graph neural network with implicit layers (MGNNI) which is able to model multiscale structures on graphs and has an expanded effective range for capturing long-range dependencies.
arXiv Detail & Related papers (2022-10-15T18:18:55Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Similarity-aware Positive Instance Sampling for Graph Contrastive
Pre-training [82.68805025636165]
We propose to select positive graph instances directly from existing graphs in the training set.
Our selection is based on certain domain-specific pair-wise similarity measurements.
Besides, we develop an adaptive node-level pre-training method to dynamically mask nodes to distribute them evenly in the graph.
arXiv Detail & Related papers (2022-06-23T20:12:51Z) - Descent Steps of a Relation-Aware Energy Produce Heterogeneous Graph
Neural Networks [25.59092732148598]
Heterogeneous graph neural networks (GNNs) achieve strong performance on node classification tasks in a semi-supervised learning setting.
We propose a novel heterogeneous GNN architecture in which layers are derived from optimization steps that descend a novel relation-aware energy function.
arXiv Detail & Related papers (2022-06-22T13:48:08Z) - ES-GNN: Generalizing Graph Neural Networks Beyond Homophily with Edge Splitting [32.69196871253339]
We propose a novel Edge Splitting GNN (ES-GNN) framework to adaptively distinguish between graph edges either relevant or irrelevant to learning tasks.
We show that our ES-GNN can be regarded as a solution to a disentangled graph denoising problem.
arXiv Detail & Related papers (2022-05-27T01:29:03Z) - Graphon-aided Joint Estimation of Multiple Graphs [24.077455621015552]
We consider the problem of estimating the topology of multiple networks from nodal observations.
We adopt a graphon as our random graph model, which is a nonparametric model from which graphs of potentially different sizes can be drawn.
arXiv Detail & Related papers (2022-02-11T15:20:44Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
We propose the Explicit Pairwise Factorized Graph Neural Network (EPFGNN), which models the whole graph as a partially observed Markov Random Field.
It contains explicit pairwise factors to model output-output relations and uses a GNN backbone to model input-output relations.
We conduct experiments on various datasets, which shows that our model can effectively improve the performance for semi-supervised node classification on graphs.
arXiv Detail & Related papers (2021-07-27T19:47:53Z) - On the Importance of Sampling in Learning Graph Convolutional Networks [13.713485304798368]
Graph Convolutional Networks (GCNs) have achieved impressive empirical advancement across a wide variety of graph-related applications.
Despite their success, training GCNs on large graphs suffers from computational and memory issues.
We describe and analyze a general textbftextitdoubly variance reduction schema that can accelerate any sampling method under the memory budget.
arXiv Detail & Related papers (2021-03-03T21:31:23Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.