論文の概要: The Science of Rejection: A Research Area for Human Computation
- arxiv url: http://arxiv.org/abs/2111.06736v1
- Date: Thu, 11 Nov 2021 13:45:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-15 14:18:44.668126
- Title: The Science of Rejection: A Research Area for Human Computation
- Title(参考訳): 拒絶の科学:人間の計算研究分野
- Authors: Burcu Sayin, Jie Yang, Andrea Passerini, Fabio Casati
- Abstract要約: モデル予測を拒絶する学習の科学がMLの中心である理由を動機付けている。
この取り組みにおいて、人間の計算が主要な役割を担っている理由を説明します。
- 参考スコア(独自算出の注目度): 19.023677429509544
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We motivate why the science of learning to reject model predictions is
central to ML, and why human computation has a lead role in this effort.
- Abstract(参考訳): モデル予測を拒絶する学習科学がMLの中心である理由と、この取り組みにおいて人間の計算が中心的な役割を果たす理由を動機付けている。
関連論文リスト
- Thinking beyond the anthropomorphic paradigm benefits LLM research [1.7392902719515677]
私たちは過去10年で何十万ものコンピュータサイエンス研究論文を分析しました。
大型言語モデル(LLM)研究における人類型用語の有病率と成長の実証的証拠を提示する。
これらの概念化は制限されている可能性があり、人間の類推を超えてLLMの理解と改善のための新たな道を開くと我々は主張する。
論文 参考訳(メタデータ) (2025-02-13T11:32:09Z) - Causal Lifting of Neural Representations: Zero-Shot Generalization for Causal Inferences [56.23412698865433]
本研究では,ラベル付き類似実験を微調整した予測モデルを用いて,ラベル付き実結果を用いた対象実験の因果推論に焦点をあてる。
まず,経験的リスク最小化(ERM)による実結果推定は,対象個体群に対して有効な因果推論を導出できない可能性があることを示す。
本稿では,実証的リスク最小化法(DEM)を提案する。
論文 参考訳(メタデータ) (2025-02-10T10:52:17Z) - Hypothesizing Missing Causal Variables with LLMs [55.28678224020973]
我々は、入力が欠落変数を持つ部分因果グラフであるような新しいタスクを定式化し、出力は部分グラフを完成させるための欠落変数に関する仮説である。
原因と効果の間の媒介変数を仮説化するLLMの強い能力を示す。
また,オープンソースモデルの一部がGPT-4モデルより優れているという驚くべき結果も得られた。
論文 参考訳(メタデータ) (2024-09-04T10:37:44Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
機械学習モデル構築の実践シナリオにおいて、説明が人間の意思決定を改善するかどうかを評価する。
驚いたことに、サリエンシマップが提供されたとき、タスクが大幅に改善されたという証拠は見つからなかった。
以上の結果から,サリエンシに基づく説明における誤解の可能性と有用性について注意が必要であることが示唆された。
論文 参考訳(メタデータ) (2023-12-10T23:13:23Z) - Neural Causal Models for Counterfactual Identification and Estimation [62.30444687707919]
本稿では,ニューラルモデルによる反事実文の評価について検討する。
まず、神経因果モデル(NCM)が十分に表現可能であることを示す。
第2に,反事実分布の同時同定と推定を行うアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-09-30T18:29:09Z) - Measuring Causal Effects of Data Statistics on Language Model's
`Factual' Predictions [59.284907093349425]
大量のトレーニングデータが、最先端のNLPモデルの高性能化の大きな理由の1つである。
トレーニングデータがどのように予測に影響を及ぼすかを記述するための言語を,因果的フレームワークを通じて提供する。
我々のフレームワークは、高価なモデルの再訓練の必要性を回避し、観測データのみに基づいて因果効果を推定することができる。
論文 参考訳(メタデータ) (2022-07-28T17:36:24Z) - Machine Explanations and Human Understanding [31.047297225560566]
説明は、機械学習モデルの人間の理解を改善すると仮定される。
実験的な研究で 混ざった結果も 否定的な結果も出ています
人間の直観が人間の理解にどのような役割を果たしているかを示す。
論文 参考訳(メタデータ) (2022-02-08T19:00:38Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
本稿では,モデルアーキテクチャの解釈可能性と信頼性,外挿を行うためのツールボックスを提案する。
与えられたテストポイントでの予測に対する入力データの影響、モデル予測の不確実性の推定、およびモデル予測の不可知スコアを提供する。
我々の研究は、物理学やより一般的には科学に適用されたMLにおける解釈可能性と信頼性の方法の体系的利用への道を開く。
論文 参考訳(メタデータ) (2021-08-04T16:32:59Z) - Enhancing Human-Machine Teaming for Medical Prognosis Through Neural
Ordinary Differential Equations (NODEs) [0.0]
医学的診断における機械学習の可能性を完全に実現するための重要な障壁は、テクノロジーの受容である。
説明可能なAI(XAI)を作成するための最近の取り組みは、いくつかのMLモデルの解釈可能性を改善するために進歩している。
本稿では,人間の理解を高め,受容性を促進する新しいMLアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-02-08T10:52:23Z) - Uncovering the Data-Related Limits of Human Reasoning Research: An
Analysis based on Recommender Systems [1.7478203318226309]
認知科学は、理論駆動の観点から人間のような知性をモデル化する目的を追求している。
ソロジック推論は人間の推論研究のコアドメインの1つである。
最近のモデルの性能予測の結果、改善の停滞が明らかになった。
論文 参考訳(メタデータ) (2020-03-11T10:12:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。