RLOps: Development Life-cycle of Reinforcement Learning Aided Open RAN
- URL: http://arxiv.org/abs/2111.06978v1
- Date: Fri, 12 Nov 2021 22:57:09 GMT
- Title: RLOps: Development Life-cycle of Reinforcement Learning Aided Open RAN
- Authors: Peizheng Li, Jonathan Thomas, Xiaoyang Wang, Ahmed Khalil, Abdelrahim
Ahmad, Rui Inacio, Shipra Kapoor, Arjun Parekh, Angela Doufexi, Arman
Shojaeifard, Robert Piechocki
- Abstract summary: This article introduces principles for machine learning (ML), in particular, reinforcement learning (RL) relevant for the Open RAN stack.
We provide a taxonomy of the challenges faced by ML/RL models throughout the development life-cycle.
We discuss all fundamental parts of RLOps, which include: model specification, development and distillation, production environment serving, operations monitoring, safety/security and data engineering platform.
- Score: 4.279828770269723
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Radio access network (RAN) technologies continue to witness massive growth,
with Open RAN gaining the most recent momentum. In the O-RAN specifications,
the RAN intelligent controller (RIC) serves as an automation host. This article
introduces principles for machine learning (ML), in particular, reinforcement
learning (RL) relevant for the O-RAN stack. Furthermore, we review
state-of-the-art research in wireless networks and cast it onto the RAN
framework and the hierarchy of the O-RAN architecture. We provide a taxonomy of
the challenges faced by ML/RL models throughout the development life-cycle:
from the system specification to production deployment (data acquisition, model
design, testing and management, etc.). To address the challenges, we integrate
a set of existing MLOps principles with unique characteristics when RL agents
are considered. This paper discusses a systematic life-cycle model development,
testing and validation pipeline, termed: RLOps. We discuss all fundamental
parts of RLOps, which include: model specification, development and
distillation, production environment serving, operations monitoring,
safety/security and data engineering platform. Based on these principles, we
propose the best practices for RLOps to achieve an automated and reproducible
model development process.
Related papers
- Developing Retrieval Augmented Generation (RAG) based LLM Systems from PDFs: An Experience Report [3.4632900249241874]
This paper presents an experience report on the development of Retrieval Augmented Generation (RAG) systems using PDF documents as the primary data source.
The RAG architecture combines generative capabilities of Large Language Models (LLMs) with the precision of information retrieval.
The practical implications of this research lie in enhancing the reliability of generative AI systems in various sectors.
arXiv Detail & Related papers (2024-10-21T12:21:49Z) - RNR: Teaching Large Language Models to Follow Roles and Rules [153.6596303205894]
We propose model, an automated data generation pipeline that generates diverse roles and rules from existing IFT instructions.
This data can then be used to train models that follow complex system prompts.
Our framework significantly improves role and rule following capability in large language models.
arXiv Detail & Related papers (2024-09-10T06:07:32Z) - Universal In-Context Approximation By Prompting Fully Recurrent Models [86.61942787684272]
We show that RNNs, LSTMs, GRUs, Linear RNNs, and linear gated architectures can serve as universal in-context approximators.
We introduce a programming language called LSRL that compiles to fully recurrent architectures.
arXiv Detail & Related papers (2024-06-03T15:25:13Z) - Logical Specifications-guided Dynamic Task Sampling for Reinforcement Learning Agents [9.529492371336286]
Reinforcement Learning (RL) has made significant strides in enabling artificial agents to learn diverse behaviors.
We propose a novel approach, called Logical Specifications-guided Dynamic Task Sampling (LSTS)
LSTS learns a set of RL policies to guide an agent from an initial state to a goal state based on a high-level task specification.
arXiv Detail & Related papers (2024-02-06T04:00:21Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
We develop a library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment.
We find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation.
These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent robustness recovery and correction behaviors.
arXiv Detail & Related papers (2024-01-29T10:01:10Z) - Forging Vision Foundation Models for Autonomous Driving: Challenges,
Methodologies, and Opportunities [59.02391344178202]
Vision foundation models (VFMs) serve as potent building blocks for a wide range of AI applications.
The scarcity of comprehensive training data, the need for multi-sensor integration, and the diverse task-specific architectures pose significant obstacles to the development of VFMs.
This paper delves into the critical challenge of forging VFMs tailored specifically for autonomous driving, while also outlining future directions.
arXiv Detail & Related papers (2024-01-16T01:57:24Z) - RLLTE: Long-Term Evolution Project of Reinforcement Learning [48.181733263496746]
We present RLLTE: a long-term evolution, extremely modular, and open-source framework for reinforcement learning research and application.
Beyond delivering top-notch algorithm implementations, RLLTE also serves as a toolkit for developing algorithms.
RLLTE is expected to set standards for RL engineering practice and be highly stimulative for industry and academia.
arXiv Detail & Related papers (2023-09-28T12:30:37Z) - On Transforming Reinforcement Learning by Transformer: The Development
Trajectory [97.79247023389445]
Transformer, originally devised for natural language processing, has also attested significant success in computer vision.
We group existing developments in two categories: architecture enhancement and trajectory optimization.
We examine the main applications of TRL in robotic manipulation, text-based games, navigation and autonomous driving.
arXiv Detail & Related papers (2022-12-29T03:15:59Z) - Actor-Critic Network for O-RAN Resource Allocation: xApp Design,
Deployment, and Analysis [3.8073142980733]
Open Radio Access Network (O-RAN) has introduced an emerging RAN architecture that enables openness, intelligence, and automated control.
The RAN Intelligent Controller (RIC) provides the platform to design and deploy RAN controllers.
xApps are the applications which will take this responsibility by leveraging machine learning (ML) algorithms and acting in near-real time.
arXiv Detail & Related papers (2022-09-26T19:12:18Z) - Sim2real for Reinforcement Learning Driven Next Generation Networks [4.29590751118341]
Reinforcement Learning (RL) models are regarded as the key to solving RAN-related multi-objective optimization problems.
One of the main reasons is the modelling gap between the simulation and the real environment, which could make the RL agent trained by simulation ill-equipped for the real environment.
This article brings to the fore the sim2real challenge within the context of Open RAN (O-RAN)
Several use cases are presented to exemplify and demonstrate failure modes of the simulations trained RL model in real environments.
arXiv Detail & Related papers (2022-06-08T12:40:24Z) - ColO-RAN: Developing Machine Learning-based xApps for Open RAN
Closed-loop Control on Programmable Experimental Platforms [22.260874168813647]
ColO-RAN is the first publicly-available large-scale O-RAN testing framework with software-defined radios-in-the-loop.
ColO-RAN enables ML research at scale using O-RAN components, programmable base stations, and a " wireless data factory"
Extensive results from our first-of-its-kind large-scale evaluation highlight the benefits and challenges of DRL-based adaptive control.
arXiv Detail & Related papers (2021-12-17T15:14:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.