LoMEF: A Framework to Produce Local Explanations for Global Model Time
Series Forecasts
- URL: http://arxiv.org/abs/2111.07001v1
- Date: Sat, 13 Nov 2021 00:17:52 GMT
- Title: LoMEF: A Framework to Produce Local Explanations for Global Model Time
Series Forecasts
- Authors: Dilini Rajapaksha, Christoph Bergmeir, Rob J Hyndman
- Abstract summary: Global Forecasting Models (GFM) that are trained across a set of multiple time series have shown superior results in many forecasting competitions and real-world applications.
However, GFMs typically lack interpretability, especially towards particular time series.
We propose a novel local model-agnostic interpretability approach to explain the forecasts from GFMs.
- Score: 2.3096751699592137
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Global Forecasting Models (GFM) that are trained across a set of multiple
time series have shown superior results in many forecasting competitions and
real-world applications compared with univariate forecasting approaches. One
aspect of the popularity of statistical forecasting models such as ETS and
ARIMA is their relative simplicity and interpretability (in terms of relevant
lags, trend, seasonality, and others), while GFMs typically lack
interpretability, especially towards particular time series. This reduces the
trust and confidence of the stakeholders when making decisions based on the
forecasts without being able to understand the predictions. To mitigate this
problem, in this work, we propose a novel local model-agnostic interpretability
approach to explain the forecasts from GFMs. We train simpler univariate
surrogate models that are considered interpretable (e.g., ETS) on the
predictions of the GFM on samples within a neighbourhood that we obtain through
bootstrapping or straightforwardly as the one-step-ahead global black-box model
forecasts of the time series which needs to be explained. After, we evaluate
the explanations for the forecasts of the global models in both qualitative and
quantitative aspects such as accuracy, fidelity, stability and
comprehensibility, and are able to show the benefits of our approach.
Related papers
- Local vs. Global Models for Hierarchical Forecasting [0.0]
This study explores the influence of distinct information utilisation on the accuracy of hierarchical forecasts.
We develop Global Forecasting Models (GFMs) to exploit cross-series and cross-hierarchies information.
Two specific GFMs based on LightGBM are introduced, demonstrating superior accuracy and lower model complexity.
arXiv Detail & Related papers (2024-11-10T08:51:49Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Counterfactual Explanations for Time Series Forecasting [14.03870816983583]
We formulate the novel problem of counterfactual generation for time series forecasting, and propose an algorithm, called ForecastCF.
ForecastCF solves the problem by applying gradient-based perturbations to the original time series.
Our results show that ForecastCF outperforms the baseline in terms of counterfactual validity and data manifold closeness.
arXiv Detail & Related papers (2023-10-12T08:51:59Z) - Performative Time-Series Forecasting [71.18553214204978]
We formalize performative time-series forecasting (PeTS) from a machine-learning perspective.
We propose a novel approach, Feature Performative-Shifting (FPS), which leverages the concept of delayed response to anticipate distribution shifts.
We conduct comprehensive experiments using multiple time-series models on COVID-19 and traffic forecasting tasks.
arXiv Detail & Related papers (2023-10-09T18:34:29Z) - Statistical post-processing of visibility ensemble forecasts [0.0]
We investigate the predictive performance of locally, semi-locally and regionally trained proportional odds logistic regression (POLR) and multilayer perceptron (MLP) neural network classifiers.
We show that while climatological forecasts outperform the raw ensemble by a wide margin, post-processing results in further substantial improvement in forecast skill.
arXiv Detail & Related papers (2023-05-24T16:41:36Z) - LIMREF: Local Interpretable Model Agnostic Rule-based Explanations for
Forecasting, with an Application to Electricity Smart Meter Data [3.0839245814393728]
We propose Local Interpretable Model-agnostic Rule-based Explanations for Forecasting (LIMREF) to explain global model forecasts.
Here, we evaluate the quality of the explanations produced by the LIMREF framework in terms of both qualitative and quantitative aspects.
arXiv Detail & Related papers (2022-02-15T22:35:11Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.