Statistical post-processing of visibility ensemble forecasts
- URL: http://arxiv.org/abs/2305.15325v2
- Date: Sat, 27 May 2023 18:54:41 GMT
- Title: Statistical post-processing of visibility ensemble forecasts
- Authors: S\'andor Baran and M\'aria Lakatos
- Abstract summary: We investigate the predictive performance of locally, semi-locally and regionally trained proportional odds logistic regression (POLR) and multilayer perceptron (MLP) neural network classifiers.
We show that while climatological forecasts outperform the raw ensemble by a wide margin, post-processing results in further substantial improvement in forecast skill.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To be able to produce accurate and reliable predictions of visibility has
crucial importance in aviation meteorology, as well as in water- and road
transportation. Nowadays, several meteorological services provide ensemble
forecasts of visibility; however, the skill, and reliability of visibility
predictions are far reduced compared to other variables, such as temperature or
wind speed. Hence, some form of calibration is strongly advised, which usually
means estimation of the predictive distribution of the weather quantity at hand
either by parametric or non-parametric approaches, including also machine
learning-based techniques. As visibility observations - according to the
suggestion of the World Meteorological Organization - are usually reported in
discrete values, the predictive distribution for this particular variable is a
discrete probability law, hence calibration can be reduced to a classification
problem. Based on visibility ensemble forecasts of the European Centre for
Medium-Range Weather Forecasts covering two slightly overlapping domains in
Central and Western Europe and two different time periods, we investigate the
predictive performance of locally, semi-locally and regionally trained
proportional odds logistic regression (POLR) and multilayer perceptron (MLP)
neural network classifiers. We show that while climatological forecasts
outperform the raw ensemble by a wide margin, post-processing results in
further substantial improvement in forecast skill and in general, POLR models
are superior to their MLP counterparts.
Related papers
- Enhancing multivariate post-processed visibility predictions utilizing CAMS forecasts [0.0]
Weather forecasts increasingly incorporate ensemble predictions of visibility.
Post-processing is recommended to enhance the reliability and accuracy of predictions.
Our study confirms that post-processed forecasts are substantially superior to raw and climatological predictions.
arXiv Detail & Related papers (2024-06-20T09:57:49Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - A two-step machine learning approach to statistical post-processing of
weather forecasts for power generation [0.0]
Wind and solar energy sources are highly volatile making planning difficult for grid operators.
We propose a two-step machine learning-based approach to calibrating ensemble weather forecasts.
arXiv Detail & Related papers (2022-07-15T16:38:14Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - LoMEF: A Framework to Produce Local Explanations for Global Model Time
Series Forecasts [2.3096751699592137]
Global Forecasting Models (GFM) that are trained across a set of multiple time series have shown superior results in many forecasting competitions and real-world applications.
However, GFMs typically lack interpretability, especially towards particular time series.
We propose a novel local model-agnostic interpretability approach to explain the forecasts from GFMs.
arXiv Detail & Related papers (2021-11-13T00:17:52Z) - Machine learning methods for postprocessing ensemble forecasts of wind
gusts: A systematic comparison [0.0]
Postprocessing ensemble weather predictions to correct systematic errors has become a standard practice in research and operations.
Here, we provide a comprehensive review and systematic comparison of eight statistical and machine learning methods for probabilistic wind gust forecasting.
We propose a flexible framework of locally adaptive neural networks with different probabilistic forecast types as output.
arXiv Detail & Related papers (2021-06-17T14:03:29Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z) - Machine learning for total cloud cover prediction [0.0]
We investigate the performance of post-processing using multilayer perceptron (MLP) neural networks, gradient boosting machines (GBM) and random forest (RF) methods.
Compared to the raw ensemble, all calibration methods result in a significant improvement in forecast skill.
RF models provide the smallest increase in predictive performance, while POLR and GBM approaches perform best.
arXiv Detail & Related papers (2020-01-16T17:13:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.