論文の概要: Learning to Evolve on Dynamic Graphs
- arxiv url: http://arxiv.org/abs/2111.07032v1
- Date: Sat, 13 Nov 2021 04:09:30 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-16 16:06:22.971417
- Title: Learning to Evolve on Dynamic Graphs
- Title(参考訳): 動的グラフにおける進化の学習
- Authors: Xintao Xiang and Tiancheng Huang and Donglin Wang
- Abstract要約: Learning to Evolve on Dynamic Graphs (LEDG)は、グラフ情報と時間情報を共同で学習する新しいアルゴリズムである。
LEDGはモデルに依存しないため、動的グラフ上でメッセージパッシングベースのグラフニューラルネットワーク(GNN)をトレーニングすることができる。
- 参考スコア(独自算出の注目度): 5.1521870302904125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Representation learning in dynamic graphs is a challenging problem because
the topology of graph and node features vary at different time. This requires
the model to be able to effectively capture both graph topology information and
temporal information. Most existing works are built on recurrent neural
networks (RNNs), which are used to exact temporal information of dynamic
graphs, and thus they inherit the same drawbacks of RNNs. In this paper, we
propose Learning to Evolve on Dynamic Graphs (LEDG) - a novel algorithm that
jointly learns graph information and time information. Specifically, our
approach utilizes gradient-based meta-learning to learn updating strategies
that have better generalization ability than RNN on snapshots. It is
model-agnostic and thus can train any message passing based graph neural
network (GNN) on dynamic graphs. To enhance the representation power, we
disentangle the embeddings into time embeddings and graph intrinsic embeddings.
We conduct experiments on various datasets and down-stream tasks, and the
experimental results validate the effectiveness of our method.
- Abstract(参考訳): 動的グラフにおける表現学習は、グラフとノードの特徴のトポロジーが異なるため、難しい問題である。
これにより、グラフトポロジ情報と時間情報の両方を効果的にキャプチャできるモデルが必要となる。
既存の作業の多くはリカレントニューラルネットワーク(RNN)上に構築されており、動的グラフの時間的情報を正確に把握するために使用されるため、RNNの欠点を継承する。
本稿では,グラフ情報と時間情報を協調的に学習する新しいアルゴリズムであるLearning to Evolve on Dynamic Graphs (LEDG)を提案する。
具体的には、勾配に基づくメタ学習を用いて、スナップショット上のRNNよりも優れた一般化能力を持つ更新戦略を学習する。
モデルに依存しないため、動的グラフ上でメッセージパッシングベースのグラフニューラルネットワーク(GNN)をトレーニングすることができる。
表現力を高めるために、埋め込みを時間埋め込みとグラフ内埋め込みに分解する。
各種データセットとダウンストリームタスクの実験を行い,本手法の有効性を検証する実験結果を得た。
関連論文リスト
- Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks [66.70786325911124]
グラフアンラーニングは、ユーザのプライバシ保護と、望ましくないデータによるネガティブな影響軽減に不可欠なツールとして登場した。
DGNNの普及に伴い、動的グラフアンラーニングの実装を検討することが不可欠となる。
DGNNアンラーニングを実装するために,効率的,効率的,モデルに依存しない,事後処理手法を提案する。
論文 参考訳(メタデータ) (2024-05-23T10:26:18Z) - How Graph Neural Networks Learn: Lessons from Training Dynamics [80.41778059014393]
グラフニューラルネットワーク(GNN)の関数空間におけるトレーニングダイナミクスについて検討する。
GNNの勾配勾配勾配最適化は暗黙的にグラフ構造を利用して学習関数を更新する。
この発見は、学習したGNN関数が一般化した時期と理由に関する新たな解釈可能な洞察を提供する。
論文 参考訳(メタデータ) (2023-10-08T10:19:56Z) - Scaling Up Dynamic Graph Representation Learning via Spiking Neural
Networks [23.01100055999135]
時間グラフの時間的および構造的パターンを効率的に捉えるために,スケーラブルなフレームワークであるSpikeNetを提案する。
RNNの代替として、SNNは明らかにグラフ力学をニューロンのスパイクトレインとしてモデル化している。
SpikeNetは、パラメータや計算オーバーヘッドが大幅に少ない大きな時間グラフに一般化する。
論文 参考訳(メタデータ) (2022-08-15T09:22:15Z) - Instant Graph Neural Networks for Dynamic Graphs [18.916632816065935]
Instant Graph Neural Network (InstantGNN) を提案する。
提案手法は,時間を要する反復計算を回避し,表現の即時更新と即時予測を可能にする。
本モデルでは,既存手法よりも高精度かつ高次精度で最先端の精度を実現する。
論文 参考訳(メタデータ) (2022-06-03T03:27:42Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Learning Graph Representations [0.0]
グラフニューラルネットワーク(GNN)は、大きな動的グラフデータセットに対する洞察を得るための効率的な方法である。
本稿では,グラフ畳み込みニューラルネットワークのオートエンコーダとソーシャル・テンポラル・グラフ・ニューラルネットワークについて論じる。
論文 参考訳(メタデータ) (2021-02-03T12:07:55Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
グラフデータの教師なし表現を学習するためのグラフコントラスト学習(GraphCL)フレームワークを提案する。
我々のフレームワークは、最先端の手法と比較して、類似またはより良い一般化可能性、転送可能性、堅牢性のグラフ表現を作成できることを示す。
論文 参考訳(メタデータ) (2020-10-22T20:13:43Z) - Lifelong Graph Learning [6.282881904019272]
連続グラフ学習問題を正規グラフ学習問題に変換することにより、グラフ学習と生涯学習を橋渡しする。
機能グラフネットワーク(FGN)は,ウェアラブルデバイスを用いた生涯の人間行動認識と特徴マッチングという2つのアプリケーションにおいて,優れた性能を発揮することを示す。
論文 参考訳(メタデータ) (2020-09-01T18:21:34Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
グラフニューラルネットワーク(GNN)は、隣の情報を集約して組み合わせることでノードの特徴を学習する。
GNNはブラックボックスとして扱われ、人間の知的な説明が欠けている。
我々はモデルレベルでGNNを解釈する新しい手法 XGNN を提案する。
論文 参考訳(メタデータ) (2020-06-03T23:52:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。