論文の概要: Learning Graph Representations
- arxiv url: http://arxiv.org/abs/2102.02026v1
- Date: Wed, 3 Feb 2021 12:07:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-02-04 19:27:46.338550
- Title: Learning Graph Representations
- Title(参考訳): グラフ表現の学習
- Authors: Rucha Bhalchandra Joshi and Subhankar Mishra
- Abstract要約: グラフニューラルネットワーク(GNN)は、大きな動的グラフデータセットに対する洞察を得るための効率的な方法である。
本稿では,グラフ畳み込みニューラルネットワークのオートエンコーダとソーシャル・テンポラル・グラフ・ニューラルネットワークについて論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Social and information networks are gaining huge popularity recently due to
their various applications. Knowledge representation through graphs in the form
of nodes and edges should preserve as many characteristics of the original data
as possible. Some of the interesting and useful applications on these graphs
are graph classification, node classification, link prediction, etc. The Graph
Neural Networks have evolved over the last few years. Graph Neural Networks
(GNNs) are efficient ways to get insight into large and dynamic graph datasets
capturing relationships among billions of entities also known as knowledge
graphs.
In this paper, we discuss the graph convolutional neural networks graph
autoencoders and spatio-temporal graph neural networks. The representations of
the graph in lower dimensions can be learned using these methods. The
representations in lower dimensions can be used further for downstream machine
learning tasks.
- Abstract(参考訳): 社会や情報ネットワークは、近年、様々な用途で大きな人気を得ています。
ノードとエッジの形でのグラフによる知識表現は、元のデータの特徴をできるだけ多く保持する必要があります。
これらのグラフに関する興味深い有用な応用としては、グラフ分類、ノード分類、リンク予測などがある。
Graph Neural Networksはここ数年で進化してきた。
グラフニューラルネットワーク(GNNs)は、知識グラフとも呼ばれる数十億のエンティティ間の関係をキャプチャする大規模でダイナミックなグラフデータセットへの洞察を得る効率的な方法です。
本稿では,グラフ畳み込みニューラルネットワークのオートエンコーダと時空間グラフニューラルネットワークについて論じる。
低次元のグラフの表現はこれらの方法を用いて学べる。
低次元の表現は、下流の機械学習タスクでさらに使うことができる。
関連論文リスト
- Knowledge Enhanced Graph Neural Networks for Graph Completion [0.0]
Knowledge Enhanced Graph Neural Networks (KeGNN)は、グラフ補完のためのニューラルシンボリックなフレームワークである。
KeGNNは、知識強化レイヤを積み重ねた基盤としてグラフニューラルネットワークで構成されている。
我々はKeGNNを、最先端のグラフニューラルネットワーク、グラフ畳み込みネットワーク、グラフ注意ネットワークの2つと組み合わせてインスタンス化する。
論文 参考訳(メタデータ) (2023-03-27T07:53:43Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - Graph-level Neural Networks: Current Progress and Future Directions [61.08696673768116]
グラフレベルのニューラルネットワーク(GLNN、ディープラーニングベースのグラフレベルの学習法)は、高次元データのモデリングにおいて優れているため、魅力的である。
本稿では,深層ニューラルネットワーク,グラフニューラルネットワーク,グラフプール上でのGLNNを網羅する系統分類法を提案する。
論文 参考訳(メタデータ) (2022-05-31T06:16:55Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - A Survey on Graph Representation Learning Methods [7.081604594416337]
グラフ表現学習の目的は、大きなグラフの構造と特徴を正確に捉えるグラフ表現ベクトルを生成することである。
グラフ表現学習の最も一般的な2つのカテゴリはグラフニューラルネット(GNN)とグラフニューラルネット(GNN)ベースの手法を使わずにグラフ埋め込み手法である。
論文 参考訳(メタデータ) (2022-04-04T21:18:48Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Hyperbolic Graph Neural Networks: A Review of Methods and Applications [55.5502008501764]
グラフニューラルネットワークは、従来のニューラルネットワークをグラフ構造化データに一般化する。
グラフ関連学習におけるユークリッドモデルの性能は、ユークリッド幾何学の表現能力によって依然として制限されている。
近年,木のような構造を持つグラフデータ処理や,ゆるい分布の処理において,双曲空間が人気が高まっている。
論文 参考訳(メタデータ) (2022-02-28T15:08:48Z) - Learning through structure: towards deep neuromorphic knowledge graph
embeddings [0.5906031288935515]
本稿では,知識グラフ推論のための深層グラフ学習アーキテクチャをニューロモルフィックアーキテクチャにマッピングする戦略を提案する。
ランダムかつ未学習のグラフニューラルネットワークが局所的なグラフ構造を保存することができるという知見に基づいて、凍結したニューラルネットワークの浅い知識グラフ埋め込みモデルを構成する。
我々は,従来型のハードウェア上では,性能水準を維持しながら,高速化とメモリの大幅な削減を実現していることを示す。
論文 参考訳(メタデータ) (2021-09-21T18:01:04Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
グラフ埋め込みは、高次元および非ユークリッド特徴空間でデータ構造を変換しエンコードする方法である。
CensNetは一般的なグラフ埋め込みフレームワークで、ノードとエッジの両方を潜在機能空間に埋め込む。
提案手法は,4つのグラフ学習課題における最先端のパフォーマンスを達成または一致させる。
論文 参考訳(メタデータ) (2020-10-25T22:39:31Z) - Deep Learning for Learning Graph Representations [58.649784596090385]
グラフデータのマイニングはコンピュータ科学においてポピュラーな研究トピックとなっている。
ネットワークデータの膨大な量は、効率的な分析に大きな課題をもたらしている。
これはグラフ表現の出現を動機付け、グラフを低次元ベクトル空間にマッピングする。
論文 参考訳(メタデータ) (2020-01-02T02:13:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。