Learning to Evolve on Dynamic Graphs
- URL: http://arxiv.org/abs/2111.07032v1
- Date: Sat, 13 Nov 2021 04:09:30 GMT
- Title: Learning to Evolve on Dynamic Graphs
- Authors: Xintao Xiang and Tiancheng Huang and Donglin Wang
- Abstract summary: Learning to Evolve on Dynamic Graphs (LEDG) is a novel algorithm that jointly learns graph information and time information.
LEDG is model-agnostic and can train any message passing based graph neural network (GNN) on dynamic graphs.
- Score: 5.1521870302904125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Representation learning in dynamic graphs is a challenging problem because
the topology of graph and node features vary at different time. This requires
the model to be able to effectively capture both graph topology information and
temporal information. Most existing works are built on recurrent neural
networks (RNNs), which are used to exact temporal information of dynamic
graphs, and thus they inherit the same drawbacks of RNNs. In this paper, we
propose Learning to Evolve on Dynamic Graphs (LEDG) - a novel algorithm that
jointly learns graph information and time information. Specifically, our
approach utilizes gradient-based meta-learning to learn updating strategies
that have better generalization ability than RNN on snapshots. It is
model-agnostic and thus can train any message passing based graph neural
network (GNN) on dynamic graphs. To enhance the representation power, we
disentangle the embeddings into time embeddings and graph intrinsic embeddings.
We conduct experiments on various datasets and down-stream tasks, and the
experimental results validate the effectiveness of our method.
Related papers
- Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks [66.70786325911124]
Graph unlearning has emerged as an essential tool for safeguarding user privacy and mitigating the negative impacts of undesirable data.
With the increasing prevalence of DGNNs, it becomes imperative to investigate the implementation of dynamic graph unlearning.
We propose an effective, efficient, model-agnostic, and post-processing method to implement DGNN unlearning.
arXiv Detail & Related papers (2024-05-23T10:26:18Z) - How Graph Neural Networks Learn: Lessons from Training Dynamics [80.41778059014393]
We study the training dynamics in function space of graph neural networks (GNNs)
We find that the gradient descent optimization of GNNs implicitly leverages the graph structure to update the learned function.
This finding offers new interpretable insights into when and why the learned GNN functions generalize.
arXiv Detail & Related papers (2023-10-08T10:19:56Z) - Scaling Up Dynamic Graph Representation Learning via Spiking Neural
Networks [23.01100055999135]
We present a scalable framework, namely SpikeNet, to efficiently capture the temporal and structural patterns of temporal graphs.
As a low-power alternative to RNNs, SNNs explicitly model graph dynamics as spike trains of neuron populations.
SpikeNet generalizes to a large temporal graph with significantly fewer parameters and computation overheads.
arXiv Detail & Related papers (2022-08-15T09:22:15Z) - Instant Graph Neural Networks for Dynamic Graphs [18.916632816065935]
We propose Instant Graph Neural Network (InstantGNN), an incremental approach for the graph representation matrix of dynamic graphs.
Our method avoids time-consuming, repetitive computations and allows instant updates on the representation and instant predictions.
Our model achieves state-of-the-art accuracy while having orders-of-magnitude higher efficiency than existing methods.
arXiv Detail & Related papers (2022-06-03T03:27:42Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Learning Graph Representations [0.0]
Graph Neural Networks (GNNs) are efficient ways to get insight into large dynamic graph datasets.
In this paper, we discuss the graph convolutional neural networks graph autoencoders and Social-temporal graph neural networks.
arXiv Detail & Related papers (2021-02-03T12:07:55Z) - Graph Contrastive Learning with Augmentations [109.23158429991298]
We propose a graph contrastive learning (GraphCL) framework for learning unsupervised representations of graph data.
We show that our framework can produce graph representations of similar or better generalizability, transferrability, and robustness compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-10-22T20:13:43Z) - Lifelong Graph Learning [6.282881904019272]
We bridge graph learning and lifelong learning by converting a continual graph learning problem to a regular graph learning problem.
We show that feature graph networks (FGN) achieve superior performance in two applications, i.e., lifelong human action recognition with wearable devices and feature matching.
arXiv Detail & Related papers (2020-09-01T18:21:34Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
Graphs neural networks (GNNs) learn node features by aggregating and combining neighbor information.
GNNs are mostly treated as black-boxes and lack human intelligible explanations.
We propose a novel approach, known as XGNN, to interpret GNNs at the model-level.
arXiv Detail & Related papers (2020-06-03T23:52:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.