論文の概要: Obstacle Avoidance for UAS in Continuous Action Space Using Deep
Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2111.07037v1
- Date: Sat, 13 Nov 2021 04:44:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-16 17:52:53.264790
- Title: Obstacle Avoidance for UAS in Continuous Action Space Using Deep
Reinforcement Learning
- Title(参考訳): 深部強化学習を用いた連続行動空間におけるUASの障害物回避
- Authors: Jueming Hu, Xuxi Yang, Weichang Wang, Peng Wei, Lei Ying, Yongming Liu
- Abstract要約: 小型無人航空機の障害物回避は将来の都市空輸の安全に不可欠である。
本稿では, PPO(Proximal Policy Optimization)に基づく深層強化学習アルゴリズムを提案する。
その結果,提案モデルが正確かつ堅牢なガイダンスを提供し,99%以上の成功率で競合を解消できることが示唆された。
- 参考スコア(独自算出の注目度): 9.891207216312937
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Obstacle avoidance for small unmanned aircraft is vital for the safety of
future urban air mobility (UAM) and Unmanned Aircraft System (UAS) Traffic
Management (UTM). There are many techniques for real-time robust drone
guidance, but many of them solve in discretized airspace and control, which
would require an additional path smoothing step to provide flexible commands
for UAS. To provide a safe and efficient computational guidance of operations
for unmanned aircraft, we explore the use of a deep reinforcement learning
algorithm based on Proximal Policy Optimization (PPO) to guide autonomous UAS
to their destinations while avoiding obstacles through continuous control. The
proposed scenario state representation and reward function can map the
continuous state space to continuous control for both heading angle and speed.
To verify the performance of the proposed learning framework, we conducted
numerical experiments with static and moving obstacles. Uncertainties
associated with the environments and safety operation bounds are investigated
in detail. Results show that the proposed model can provide accurate and robust
guidance and resolve conflict with a success rate of over 99%.
- Abstract(参考訳): 小型無人航空機の障害物回避は、将来の都市航空移動 (uam) と無人航空機システム (uas) の交通管理 (utm) の安全性に不可欠である。
リアルタイムのロバストなドローン誘導には多くの技術があるが、その多くがエアスペースとコントロールを区別して解決し、UASの柔軟なコマンドを提供するためには、さらなる経路の平滑化が必要になる。
無人航空機の運用の安全かつ効率的な計算指導を行うため,我々はPPOに基づく深層強化学習アルゴリズムを用いて,自律型UASを目的地まで誘導し,連続制御による障害物回避を図っている。
提案するシナリオ状態表現と報酬関数は、方向角と速度の両方の連続制御に連続状態空間をマッピングすることができる。
提案手法の有効性を検証するため,静的および移動障害物を用いた数値実験を行った。
環境と安全運転境界に関する不確かさを詳細に検討した。
その結果,提案モデルは正確かつ堅牢なガイダンスを提供し,99%以上の成功率で競合を解消できることがわかった。
関連論文リスト
- Custom Non-Linear Model Predictive Control for Obstacle Avoidance in Indoor and Outdoor Environments [0.0]
本稿では,DJI行列100のための非線形モデル予測制御(NMPC)フレームワークを提案する。
このフレームワークは様々なトラジェクトリタイプをサポートし、厳密な操作の精度を制御するためにペナルティベースのコスト関数を採用している。
論文 参考訳(メタデータ) (2024-10-03T17:50:19Z) - RACER: Epistemic Risk-Sensitive RL Enables Fast Driving with Fewer Crashes [57.319845580050924]
本稿では,リスク感応制御と適応行動空間のカリキュラムを組み合わせた強化学習フレームワークを提案する。
提案アルゴリズムは,現実世界のオフロード運転タスクに対して,高速なポリシーを学習可能であることを示す。
論文 参考訳(メタデータ) (2024-05-07T23:32:36Z) - A Safer Vision-based Autonomous Planning System for Quadrotor UAVs with
Dynamic Obstacle Trajectory Prediction and Its Application with LLMs [6.747468447244154]
本稿では,動的障害物の追跡と軌道予測を組み合わせて,効率的な自律飛行を実現するビジョンベース計画システムを提案する。
シミュレーション環境と実環境環境の両方で実験を行い,本研究の結果から動的環境の障害物をリアルタイムに検出・回避することが可能であることが示唆された。
論文 参考訳(メタデータ) (2023-11-21T08:09:00Z) - Safe multi-agent motion planning under uncertainty for drones using
filtered reinforcement learning [6.783774261623415]
本稿では,強化学習と制約制御に基づく軌道計画の強みを生かした,トラクタブルな運動プランナを提案する。
提案手法は,学習のみに基づく手法よりも訓練が容易な,安全かつリアルタイムな実装可能なマルチエージェントモーションプランナを提供する。
論文 参考訳(メタデータ) (2023-10-31T18:09:26Z) - Toward collision-free trajectory for autonomous and pilot-controlled
unmanned aerial vehicles [1.018017727755629]
本研究は、高度衝突管理手法の開発において、PilotAware Ltdが入手した電子情報(EC)をより活用するものである。
DACM手法の利点は、空中衝突を避けるための広範囲なシミュレーションと実世界のフィールドテストによって実証されてきた。
論文 参考訳(メタデータ) (2023-09-18T18:24:31Z) - Evaluation of Safety Constraints in Autonomous Navigation with Deep
Reinforcement Learning [62.997667081978825]
学習可能なナビゲーションポリシとして,セーフとアンセーフの2つを比較します。
安全なポリシは、制約をアカウントに含めますが、もう一方はそうではありません。
安全政策は、よりクリアランスの高い軌道を生成することができ(障害物によらず)、全体的な性能を犠牲にすることなく、トレーニング中に衝突を減らすことができることを示す。
論文 参考訳(メタデータ) (2023-07-27T01:04:57Z) - Reinforcement Learning-Based Air Traffic Deconfliction [7.782300855058585]
本研究は,2機の水平分離を自動化することに焦点を当て,障害物回避問題を2次元サロゲート最適化課題として提示する。
強化学習(RL)を用いて、回避ポリシーを最適化し、ダイナミクス、インタラクション、意思決定をモデル化する。
提案システムは,安全要件を満たす高速かつ達成可能な回避軌道を生成する。
論文 参考訳(メタデータ) (2023-01-05T00:37:20Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - Differentiable Control Barrier Functions for Vision-based End-to-End
Autonomous Driving [100.57791628642624]
本稿では,視覚に基づくエンドツーエンド自動運転のための安全保証学習フレームワークを提案する。
我々は、勾配降下によりエンドツーエンドに訓練された微分制御バリア関数(dCBF)を備えた学習システムを設計する。
論文 参考訳(メタデータ) (2022-03-04T16:14:33Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
本稿では,AVの最適決定を支援するために,マルコフ決定プロセス(MDP)に基づくインテリジェントな最適化フレームワークを提案する。
そこで我々は,近年の深層強化学習技術を活用した効果的な学習アルゴリズムを開発し,AVの最適方針を見出す。
提案手法は,従来の深部強化学習手法と比較して,AVによる障害物ミス検出確率を最大67%削減することを示す。
論文 参考訳(メタデータ) (2021-05-28T08:45:37Z) - Chance-Constrained Trajectory Optimization for Safe Exploration and
Learning of Nonlinear Systems [81.7983463275447]
学習に基づく制御アルゴリズムは、訓練のための豊富な監督を伴うデータ収集を必要とする。
本稿では,機会制約付き最適制御と動的学習とフィードバック制御を統合した安全な探索による最適動作計画のための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2020-05-09T05:57:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。