論文の概要: Reinforcement Learning-Based Air Traffic Deconfliction
- arxiv url: http://arxiv.org/abs/2301.01861v1
- Date: Thu, 5 Jan 2023 00:37:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-06 14:36:35.364605
- Title: Reinforcement Learning-Based Air Traffic Deconfliction
- Title(参考訳): 強化学習に基づく空気交通の分離
- Authors: Denis Osipychev, Dragos Margineantu, Girish Chowdhary
- Abstract要約: 本研究は,2機の水平分離を自動化することに焦点を当て,障害物回避問題を2次元サロゲート最適化課題として提示する。
強化学習(RL)を用いて、回避ポリシーを最適化し、ダイナミクス、インタラクション、意思決定をモデル化する。
提案システムは,安全要件を満たす高速かつ達成可能な回避軌道を生成する。
- 参考スコア(独自算出の注目度): 7.782300855058585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Remain Well Clear, keeping the aircraft away from hazards by the appropriate
separation distance, is an essential technology for the safe operation of
uncrewed aerial vehicles in congested airspace. This work focuses on automating
the horizontal separation of two aircraft and presents the obstacle avoidance
problem as a 2D surrogate optimization task. By our design, the surrogate task
is made more conservative to guarantee the execution of the solution in the
primary domain. Using Reinforcement Learning (RL), we optimize the avoidance
policy and model the dynamics, interactions, and decision-making. By
recursively sampling the resulting policy and the surrogate transitions, the
system translates the avoidance policy into a complete avoidance trajectory.
Then, the solver publishes the trajectory as a set of waypoints for the
airplane to follow using the Robot Operating System (ROS) interface. The
proposed system generates a quick and achievable avoidance trajectory that
satisfies the safety requirements. Evaluation of our system is completed in a
high-fidelity simulation and full-scale airplane demonstration. Moreover, the
paper concludes an enormous integration effort that has enabled a real-life
demonstration of the RL-based system.
- Abstract(参考訳): 適切な離間距離で航空機を危険から遠ざけるための残留ウェルクリアは、密集した空域で無人航空機を安全に運用するための重要な技術である。
本研究は,2機の航空機の水平分離の自動化に着目し,障害物回避問題を2次元サロゲート最適化タスクとして提示する。
私たちの設計では、サブロゲートタスクはプライマリドメインにおけるソリューションの実行を保証するためにより保守的になります。
強化学習(rl)を用いることで,回避方針を最適化し,ダイナミクス,インタラクション,意思決定をモデル化する。
結果のポリシーとサロゲート遷移を再帰的にサンプリングすることで、システムは回避ポリシーを完全な回避軌道に変換する。
そして、この軌道を、ロボットオペレーティングシステム(ros)インタフェースを用いて飛行機が追従するための経路のセットとして公開する。
提案システムは,安全要件を満たす高速かつ達成可能な回避軌道を生成する。
本システムの評価は高忠実度シミュレーションおよび実機実機実験で完了した。
さらに,本論文では,RLシステムの実演を実現するための膨大な統合作業について述べる。
関連論文リスト
- Low-altitude Friendly-Jamming for Satellite-Maritime Communications via Generative AI-enabled Deep Reinforcement Learning [72.72954660774002]
低地球軌道(LEO)衛星は、海上無線通信で広範囲にわたるデータ通信を支援するために使用できる。
LEO衛星を広範囲にカバーし、チャネルの開放性と組み合わせることで、通信プロセスはセキュリティ上のリスクに悩まされる可能性がある。
本稿では無人航空機による低高度衛星通信システムLEOについて述べる。
論文 参考訳(メタデータ) (2025-01-26T10:13:51Z) - Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
無人航空機や他の航空機による低高度経済(LAE)は、輸送、農業、環境監視といった分野に革命をもたらした。
今後の6世代(6G)時代において、UAV支援移動エッジコンピューティング(MEC)は特に山岳や災害に遭った地域のような困難な環境において重要である。
タスクオフロード問題は、主にタスク遅延の最小化とUAVのエネルギー消費のトレードオフに対処するUAV支援MECの重要な問題の一つである。
論文 参考訳(メタデータ) (2025-01-11T02:32:42Z) - Monocular Obstacle Avoidance Based on Inverse PPO for Fixed-wing UAVs [29.207513994002202]
固定翼無人航空機(英語: Fixed-wing Unmanned Aerial Vehicles、UAV)は、低高度経済(LAE)と都市空運(UAM)のための最も一般的なプラットフォームの一つである。
従来の地図や高度なセンサーに依存する古典的な障害物回避システムは、未知の低高度環境や小型UAVプラットフォームにおいて制限に直面している。
本稿では,DRLに基づくUAV衝突回避システムを提案する。
論文 参考訳(メタデータ) (2024-11-27T03:03:37Z) - ReGentS: Real-World Safety-Critical Driving Scenario Generation Made Stable [88.08120417169971]
機械学習に基づく自律運転システムは、現実世界のデータでは稀な安全クリティカルなシナリオで課題に直面していることが多い。
この研究は、軌道最適化によって複雑な現実世界の通常のシナリオを変更することによって、安全クリティカルな運転シナリオを生成することを検討する。
提案手法は、頑健なプランナーの訓練には役に立たない非現実的な発散軌道と避けられない衝突シナリオに対処する。
論文 参考訳(メタデータ) (2024-09-12T08:26:33Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - Spacecraft Autonomous Decision-Planning for Collision Avoidance: a
Reinforcement Learning Approach [0.0]
本研究は、強化学習技術に基づく宇宙船における自律的なCA意思決定機能の実装を提案する。
提案フレームワークは,軌道上の破片の状態を不完全な監視し,正確な衝突回避策(CAM)を実行するためのポリシーをAIシステムが効果的に学習できるようにする。
目的は、CAMを自律的に実施するための意思決定プロセスを、人間の介入なしに宇宙船に委譲することである。
論文 参考訳(メタデータ) (2023-10-29T10:15:33Z) - In-Distribution Barrier Functions: Self-Supervised Policy Filters that
Avoid Out-of-Distribution States [84.24300005271185]
本稿では,任意の参照ポリシーをラップした制御フィルタを提案する。
本手法は、トップダウンとエゴセントリックの両方のビュー設定を含むシミュレーション環境における2つの異なるビズモータ制御タスクに有効である。
論文 参考訳(メタデータ) (2023-01-27T22:28:19Z) - Reward Function Optimization of a Deep Reinforcement Learning Collision
Avoidance System [0.0]
無人航空機システム(UAS)の普及により、航空宇宙規制当局はこれらの航空機と衝突回避システムとの相互運用性を検討するようになった。
現在義務化されているTCASの制限により、連邦航空局は新たなソリューションである空中衝突回避システムX(ACAS X)の開発を委託した。
本研究では,サロゲートを用いてパラメータを調整したDRL衝突回避システムの利点について検討する。
論文 参考訳(メタデータ) (2022-12-01T20:20:41Z) - Smooth Trajectory Collision Avoidance through Deep Reinforcement
Learning [0.0]
本稿では,DRLに基づくナビゲーションソリューションにおける2つの重要な問題に対処するために,エージェントの状態と報酬関数の設計を提案する。
我々のモデルは、衝突の可能性を著しく低減しつつ、UAVのスムーズな飛行を確保するために、マージンの報酬と滑らかさの制約に依存している。
論文 参考訳(メタデータ) (2022-10-12T16:27:32Z) - Obstacle Avoidance for UAS in Continuous Action Space Using Deep
Reinforcement Learning [9.891207216312937]
小型無人航空機の障害物回避は将来の都市空輸の安全に不可欠である。
本稿では, PPO(Proximal Policy Optimization)に基づく深層強化学習アルゴリズムを提案する。
その結果,提案モデルが正確かつ堅牢なガイダンスを提供し,99%以上の成功率で競合を解消できることが示唆された。
論文 参考訳(メタデータ) (2021-11-13T04:44:53Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。