Deep Neural Networks for Automatic Grain-matrix Segmentation in Plane
and Cross-polarized Sandstone Photomicrographs
- URL: http://arxiv.org/abs/2111.07102v1
- Date: Sat, 13 Nov 2021 12:04:06 GMT
- Title: Deep Neural Networks for Automatic Grain-matrix Segmentation in Plane
and Cross-polarized Sandstone Photomicrographs
- Authors: Rajdeep Das, Ajoy Mondal, Tapan Chakraborty, and Kuntal Ghosh
- Abstract summary: Grain segmentation is the primary step for computer-aided mineral identification and sandstone classification.
In this paper, we formulate grain segmentation as a pixel-wise two-class (i.e., grain and background) semantic segmentation task.
We develop a deep learning-based end-to-end trainable framework named Deep Grain Semantic network (DSGSN), a data-driven method, and provide a generic solution.
- Score: 5.638291203837104
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Grain segmentation of sandstone that is partitioning the grain from its
surrounding matrix/cement in the thin section is the primary step for
computer-aided mineral identification and sandstone classification. The
microscopic images of sandstone contain many mineral grains and their
surrounding matrix/cement. The distinction between adjacent grains and the
matrix is often ambiguous, making grain segmentation difficult. Various
solutions exist in literature to handle these problems; however, they are not
robust against sandstone petrography's varied pattern. In this paper, we
formulate grain segmentation as a pixel-wise two-class (i.e., grain and
background) semantic segmentation task. We develop a deep learning-based
end-to-end trainable framework named Deep Semantic Grain Segmentation network
(DSGSN), a data-driven method, and provide a generic solution. As per the
authors' knowledge, this is the first work where the deep neural network is
explored to solve the grain segmentation problem. Extensive experiments on
microscopic images highlight that our method obtains better segmentation
accuracy than various segmentation architectures with more parameters.
Related papers
- Enhancing Boundary Segmentation for Topological Accuracy with Skeleton-based Methods [7.646983689651424]
Topological consistency plays a crucial role in the task of boundary segmentation for reticular images.
We propose the Skea-Topo Aware loss, which is a novel loss function that takes into account the shape of each object and topological significance of the pixels.
Experiments prove that our method improves topological consistency by up to 7 points in VI compared to 13 state-of-art methods.
arXiv Detail & Related papers (2024-04-29T09:27:31Z) - Train-Free Segmentation in MRI with Cubical Persistent Homology [0.0]
We describe a new general method for segmentation in MRI scans using Topological Data Analysis (TDA)
It works in three steps, first identifying the whole object to segment via automatic thresholding, then detecting a distinctive subset whose topology is known in advance, and finally deducing the various components of the segmentation.
We study the examples of glioblastoma segmentation in brain MRI, where a sphere is to be detected, as well as myocardium in cardiac MRI, involving a cylinder, and cortical plate detection in fetal brain MRI, whose 2D slices are circles.
arXiv Detail & Related papers (2024-01-02T11:43:49Z) - SegRefiner: Towards Model-Agnostic Segmentation Refinement with Discrete
Diffusion Process [102.18226145874007]
We propose a model-agnostic solution called SegRefiner to enhance the quality of object masks produced by different segmentation models.
SegRefiner takes coarse masks as inputs and refines them using a discrete diffusion process.
It consistently improves both the segmentation metrics and boundary metrics across different types of coarse masks.
arXiv Detail & Related papers (2023-12-19T18:53:47Z) - Two Approaches to Supervised Image Segmentation [55.616364225463066]
The present work develops comparison experiments between deep learning and multiset neurons approaches.
The deep learning approach confirmed its potential for performing image segmentation.
The alternative multiset methodology allowed for enhanced accuracy while requiring little computational resources.
arXiv Detail & Related papers (2023-07-19T16:42:52Z) - Scale-aware Super-resolution Network with Dual Affinity Learning for
Lesion Segmentation from Medical Images [50.76668288066681]
We present a scale-aware super-resolution network to adaptively segment lesions of various sizes from low-resolution medical images.
Our proposed network achieved consistent improvements compared to other state-of-the-art methods.
arXiv Detail & Related papers (2023-05-30T14:25:55Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Multiscale Analysis for Improving Texture Classification [62.226224120400026]
This paper employs the Gaussian-Laplacian pyramid to treat different spatial frequency bands of a texture separately.
We aggregate features extracted from gray and color texture images using bio-inspired texture descriptors, information-theoretic measures, gray-level co-occurrence matrix features, and Haralick statistical features into a single feature vector.
arXiv Detail & Related papers (2022-04-21T01:32:22Z) - Grasp-Oriented Fine-grained Cloth Segmentation without Real Supervision [66.56535902642085]
This paper tackles the problem of fine-grained region detection in deformed clothes using only a depth image.
We define up to 6 semantic regions of varying extent, including edges on the neckline, sleeve cuffs, and hem, plus top and bottom grasping points.
We introduce a U-net based network to segment and label these parts.
We show that training our network solely with synthetic data and the proposed DA yields results competitive with models trained on real data.
arXiv Detail & Related papers (2021-10-06T16:31:20Z) - A Novel Falling-Ball Algorithm for Image Segmentation [0.14337588659482517]
Region-based Falling-Ball algorithm is presented, which is a region-based segmentation algorithm.
The proposed algorithm detects the catchment basins by assuming that a ball falling from hilly terrains will stop in a catchment basin.
arXiv Detail & Related papers (2021-05-06T12:41:10Z) - Detecting micro fractures with X-ray computed tomography [4.855026133182103]
We present a data-set produced by the successful visualization of a fracture network in Carrara marble with XRCT.
Three conventional and two machine-learning-based methods are evaluated.
The output of the 2D U-net model is one of the adopted machine-learning-based segmentation methods.
arXiv Detail & Related papers (2021-03-23T20:20:24Z) - MudrockNet: Semantic Segmentation of Mudrock SEM Images through Deep
Learning [0.0]
We propose a deep learning SEM segmentation model, MudrockNet based on Google's DeepLab-v3+ architecture.
The trained deep learning model obtained a pixel-accuracy about 90%, and predictions for the test data obtained a mean intersection over union (IoU) of 0.6591 for silt grains and 0.6642 for pores.
arXiv Detail & Related papers (2021-02-05T19:38:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.