The interventional Bayesian Gaussian equivalent score for Bayesian
causal inference with unknown soft interventions
- URL: http://arxiv.org/abs/2205.02602v1
- Date: Thu, 5 May 2022 12:32:08 GMT
- Title: The interventional Bayesian Gaussian equivalent score for Bayesian
causal inference with unknown soft interventions
- Authors: Jack Kuipers and Giusi Moffa
- Abstract summary: In certain settings, such as genomics, we may have data from heterogeneous study conditions, with soft (partial) interventions only pertaining to a subset of the study variables.
We define the interventional BGe score for a mixture of observational and interventional data, where the targets and effects of intervention may be unknown.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Describing the causal relations governing a system is a fundamental task in
many scientific fields, ideally addressed by experimental studies. However,
obtaining data under intervention scenarios may not always be feasible, while
discovering causal relations from purely observational data is notoriously
challenging. In certain settings, such as genomics, we may have data from
heterogeneous study conditions, with soft (partial) interventions only
pertaining to a subset of the study variables, whose effects and targets are
possibly unknown. Combining data from experimental and observational studies
offers the opportunity to leverage both domains and improve on the
identifiability of causal structures. To this end, we define the interventional
BGe score for a mixture of observational and interventional data, where the
targets and effects of intervention may be unknown. To demonstrate the approach
we compare its performance to other state-of-the-art algorithms, both in
simulations and data analysis applications. Prerogative of our method is that
it takes a Bayesian perspective leading to a full characterisation of the
posterior distribution of the DAG structures. Given a sample of DAGs one can
also automatically derive full posterior distributions of the intervention
effects. Consequently the method effectively captures the uncertainty both in
the structure and the parameter estimates. Codes to reproduce the simulations
and analyses are publicly available at github.com/jackkuipers/iBGe
Related papers
- Learning Mixtures of Unknown Causal Interventions [14.788930098406027]
We consider the challenge of disentangling mixed interventional and observational data within Structural Equation Models (SEMs)
We demonstrate that conducting interventions, whether do or soft, yields distributions with sufficient diversity and properties to efficiently recovering each component within the mixture.
As a result, the causal graph can be identified up to its interventional Markov Equivalence Class, similar to scenarios where no noise influences the generation of interventional data.
arXiv Detail & Related papers (2024-10-31T21:25:11Z) - Bayesian Causal Inference with Gaussian Process Networks [1.7188280334580197]
We consider the problem of the Bayesian estimation of the effects of hypothetical interventions in the Gaussian Process Network model.
We detail how to perform causal inference on GPNs by simulating the effect of an intervention across the whole network and propagating the effect of the intervention on downstream variables.
We extend both frameworks beyond the case of a known causal graph, incorporating uncertainty about the causal structure via Markov chain Monte Carlo methods.
arXiv Detail & Related papers (2024-02-01T14:39:59Z) - Approximating Counterfactual Bounds while Fusing Observational, Biased
and Randomised Data Sources [64.96984404868411]
We address the problem of integrating data from multiple, possibly biased, observational and interventional studies.
We show that the likelihood of the available data has no local maxima.
We then show how the same approach can address the general case of multiple datasets.
arXiv Detail & Related papers (2023-07-31T11:28:24Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
We derive a likelihood characterisation for the overall data that leads us to extend a previous EM-based algorithm.
The new algorithm learns to approximate the (unidentifiability) region of model parameters from such mixed data sources.
It delivers interval approximations to counterfactual results, which collapse to points in the identifiable case.
arXiv Detail & Related papers (2022-12-06T12:42:11Z) - Active Learning for Optimal Intervention Design in Causal Models [11.294389953686945]
We develop a causal active learning strategy to identify interventions that are optimal, as measured by the discrepancy between the post-interventional mean of the distribution and a desired target mean.
We apply our approach to both synthetic data and single-cell transcriptomic data from Perturb-CITE-seq experiments to identify optimal perturbations that induce a specific cell state transition.
arXiv Detail & Related papers (2022-09-10T20:40:30Z) - BaCaDI: Bayesian Causal Discovery with Unknown Interventions [118.93754590721173]
BaCaDI operates in the continuous space of latent probabilistic representations of both causal structures and interventions.
In experiments on synthetic causal discovery tasks and simulated gene-expression data, BaCaDI outperforms related methods in identifying causal structures and intervention targets.
arXiv Detail & Related papers (2022-06-03T16:25:48Z) - Differentiable Causal Discovery Under Latent Interventions [3.867363075280544]
Recent work has shown promising results in causal discovery by leveraging interventional data with gradient-based methods, even when the intervened variables are unknown.
We envision a scenario with an extensive dataset sampled from multiple intervention distributions and one observation distribution, but where we do not know which distribution originated each sample and how the intervention affected the system.
We propose a method based on neural networks and variational inference that addresses this scenario by framing it as learning a shared causal graph among an infinite mixture.
arXiv Detail & Related papers (2022-03-04T14:21:28Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
Current approaches to causal structure learning either work with known intervention targets or use hypothesis testing to discover the unknown intervention targets.
This paper proposes a scalable and efficient algorithm that consistently identifies all intervention targets.
The proposed algorithm can be used to also update a given observational Markov equivalence class into the interventional Markov equivalence class.
arXiv Detail & Related papers (2021-11-15T03:16:56Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.