Identifying perturbation targets through causal differential networks
- URL: http://arxiv.org/abs/2410.03380v2
- Date: Mon, 10 Feb 2025 16:21:03 GMT
- Title: Identifying perturbation targets through causal differential networks
- Authors: Menghua Wu, Umesh Padia, Sean H. Murphy, Regina Barzilay, Tommi Jaakkola,
- Abstract summary: We propose a causality-inspired approach to identify variables responsible for changes to a biological system.
First, we infer noisy causal graphs from the observational and interventional data.
We then learn to map the differences between these graphs, along with additional statistical features, to sets of variables that were intervened upon.
- Score: 23.568795598997376
- License:
- Abstract: Identifying variables responsible for changes to a biological system enables applications in drug target discovery and cell engineering. Given a pair of observational and interventional datasets, the goal is to isolate the subset of observed variables that were the targets of the intervention. Directly applying causal discovery algorithms is challenging: the data may contain thousands of variables with as few as tens of samples per intervention, and biological systems do not adhere to classical causality assumptions. We propose a causality-inspired approach to address this practical setting. First, we infer noisy causal graphs from the observational and interventional data. Then, we learn to map the differences between these graphs, along with additional statistical features, to sets of variables that were intervened upon. Both modules are jointly trained in a supervised framework, on simulated and real data that reflect the nature of biological interventions. This approach consistently outperforms baselines for perturbation modeling on seven single-cell transcriptomics datasets. We also demonstrate significant improvements over current causal discovery methods for predicting soft and hard intervention targets across a variety of synthetic data.
Related papers
- Learning Mixtures of Unknown Causal Interventions [14.788930098406027]
We consider the challenge of disentangling mixed interventional and observational data within Structural Equation Models (SEMs)
We demonstrate that conducting interventions, whether do or soft, yields distributions with sufficient diversity and properties to efficiently recovering each component within the mixture.
As a result, the causal graph can be identified up to its interventional Markov Equivalence Class, similar to scenarios where no noise influences the generation of interventional data.
arXiv Detail & Related papers (2024-10-31T21:25:11Z) - Targeted Cause Discovery with Data-Driven Learning [66.86881771339145]
We propose a novel machine learning approach for inferring causal variables of a target variable from observations.
We employ a neural network trained to identify causality through supervised learning on simulated data.
Empirical results demonstrate the effectiveness of our method in identifying causal relationships within large-scale gene regulatory networks.
arXiv Detail & Related papers (2024-08-29T02:21:11Z) - Identifiability Guarantees for Causal Disentanglement from Soft
Interventions [26.435199501882806]
Causal disentanglement aims to uncover a representation of data using latent variables that are interrelated through a causal model.
In this paper, we focus on the scenario where unpaired observational and interventional data are available, with each intervention changing the mechanism of a latent variable.
When the causal variables are fully observed, statistically consistent algorithms have been developed to identify the causal model under faithfulness assumptions.
arXiv Detail & Related papers (2023-07-12T15:39:39Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
We develop tools for decomposing spurious variations in Markovian and Semi-Markovian models.
We prove the first results that allow a non-parametric decomposition of spurious effects.
The described approach has several applications, ranging from explainable and fair AI to questions in epidemiology and medicine.
arXiv Detail & Related papers (2023-06-08T09:40:28Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - The interventional Bayesian Gaussian equivalent score for Bayesian
causal inference with unknown soft interventions [0.0]
In certain settings, such as genomics, we may have data from heterogeneous study conditions, with soft (partial) interventions only pertaining to a subset of the study variables.
We define the interventional BGe score for a mixture of observational and interventional data, where the targets and effects of intervention may be unknown.
arXiv Detail & Related papers (2022-05-05T12:32:08Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
Current approaches to causal structure learning either work with known intervention targets or use hypothesis testing to discover the unknown intervention targets.
This paper proposes a scalable and efficient algorithm that consistently identifies all intervention targets.
The proposed algorithm can be used to also update a given observational Markov equivalence class into the interventional Markov equivalence class.
arXiv Detail & Related papers (2021-11-15T03:16:56Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.