Learnable Locality-Sensitive Hashing for Video Anomaly Detection
- URL: http://arxiv.org/abs/2111.07839v2
- Date: Tue, 16 Nov 2021 02:27:04 GMT
- Title: Learnable Locality-Sensitive Hashing for Video Anomaly Detection
- Authors: Yue Lu, Congqi Cao and Yanning Zhang
- Abstract summary: Video anomaly detection (VAD) mainly refers to identifying anomalous events that have not occurred in the training set where only normal samples are available.
We propose a novel distance-based VAD method to take advantage of all the available normal data efficiently and flexibly.
- Score: 44.19433917039249
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Video anomaly detection (VAD) mainly refers to identifying anomalous events
that have not occurred in the training set where only normal samples are
available. Existing works usually formulate VAD as a reconstruction or
prediction problem. However, the adaptability and scalability of these methods
are limited. In this paper, we propose a novel distance-based VAD method to
take advantage of all the available normal data efficiently and flexibly. In
our method, the smaller the distance between a testing sample and normal
samples, the higher the probability that the testing sample is normal.
Specifically, we propose to use locality-sensitive hashing (LSH) to map samples
whose similarity exceeds a certain threshold into the same bucket in advance.
In this manner, the complexity of near neighbor search is cut down
significantly. To make the samples that are semantically similar get closer and
samples not similar get further apart, we propose a novel learnable version of
LSH that embeds LSH into a neural network and optimizes the hash functions with
contrastive learning strategy. The proposed method is robust to data imbalance
and can handle the large intra-class variations in normal data flexibly.
Besides, it has a good ability of scalability. Extensive experiments
demonstrate the superiority of our method, which achieves new state-of-the-art
results on VAD benchmarks.
Related papers
- FUN-AD: Fully Unsupervised Learning for Anomaly Detection with Noisy Training Data [1.0650780147044159]
We propose a novel learning-based approach for fully unsupervised anomaly detection with unlabeled and potentially contaminated training data.
Our method is motivated by two observations, that i) the pairwise feature distances between the normal samples are on average likely to be smaller than those between the anomaly samples or heterogeneous samples and ii) pairs of features mutually closest to each other are likely to be homogeneous pairs.
Building on the first observation that nearest-neighbor distances can distinguish between confident normal samples and anomalies, we propose a pseudo-labeling strategy using an iteratively reconstructed memory bank.
arXiv Detail & Related papers (2024-11-25T05:51:38Z) - Sample and Predict Your Latent: Modality-free Sequential Disentanglement
via Contrastive Estimation [2.7759072740347017]
We introduce a self-supervised sequential disentanglement framework based on contrastive estimation with no external signals.
In practice, we propose a unified, efficient, and easy-to-code sampling strategy for semantically similar and dissimilar views of the data.
Our method presents state-of-the-art results in comparison to existing techniques.
arXiv Detail & Related papers (2023-05-25T10:50:30Z) - Intra-class Adaptive Augmentation with Neighbor Correction for Deep
Metric Learning [99.14132861655223]
We propose a novel intra-class adaptive augmentation (IAA) framework for deep metric learning.
We reasonably estimate intra-class variations for every class and generate adaptive synthetic samples to support hard samples mining.
Our method significantly improves and outperforms the state-of-the-art methods on retrieval performances by 3%-6%.
arXiv Detail & Related papers (2022-11-29T14:52:38Z) - Adaptive Sketches for Robust Regression with Importance Sampling [64.75899469557272]
We introduce data structures for solving robust regression through gradient descent (SGD)
Our algorithm effectively runs $T$ steps of SGD with importance sampling while using sublinear space and just making a single pass over the data.
arXiv Detail & Related papers (2022-07-16T03:09:30Z) - Diverse Human Motion Prediction via Gumbel-Softmax Sampling from an
Auxiliary Space [34.83587750498361]
Diverse human motion prediction aims at predicting multiple possible future pose sequences from a sequence of observed poses.
Previous approaches usually employ deep generative networks to model the conditional distribution of data, and then randomly sample outcomes from the distribution.
We propose a novel sampling strategy for sampling very diverse results from an imbalanced multimodal distribution.
arXiv Detail & Related papers (2022-07-15T09:03:57Z) - Anomaly Detection with Test Time Augmentation and Consistency Evaluation [13.709281244889691]
We propose a simple, yet effective anomaly detection algorithm named Test Time Augmentation Anomaly Detection (TTA-AD)
We observe that in-distribution data enjoy more consistent predictions for its original and augmented versions on a trained network than out-distribution data.
Experiments on various high-resolution image benchmark datasets demonstrate that TTA-AD achieves comparable or better detection performance.
arXiv Detail & Related papers (2022-06-06T04:27:06Z) - Fake It Till You Make It: Near-Distribution Novelty Detection by
Score-Based Generative Models [54.182955830194445]
existing models either fail or face a dramatic drop under the so-called near-distribution" setting.
We propose to exploit a score-based generative model to produce synthetic near-distribution anomalous data.
Our method improves the near-distribution novelty detection by 6% and passes the state-of-the-art by 1% to 5% across nine novelty detection benchmarks.
arXiv Detail & Related papers (2022-05-28T02:02:53Z) - Exponentially Tilted Gaussian Prior for Variational Autoencoder [3.52359746858894]
Recent studies show that probabilistic generative models can perform poorly on this task.
We propose the exponentially tilted Gaussian prior distribution for the Variational Autoencoder (VAE)
We show that our model produces high quality image samples which are more crisp than that of a standard Gaussian VAE.
arXiv Detail & Related papers (2021-11-30T18:28:19Z) - Local policy search with Bayesian optimization [73.0364959221845]
Reinforcement learning aims to find an optimal policy by interaction with an environment.
Policy gradients for local search are often obtained from random perturbations.
We develop an algorithm utilizing a probabilistic model of the objective function and its gradient.
arXiv Detail & Related papers (2021-06-22T16:07:02Z) - Attentional-Biased Stochastic Gradient Descent [74.49926199036481]
We present a provable method (named ABSGD) for addressing the data imbalance or label noise problem in deep learning.
Our method is a simple modification to momentum SGD where we assign an individual importance weight to each sample in the mini-batch.
ABSGD is flexible enough to combine with other robust losses without any additional cost.
arXiv Detail & Related papers (2020-12-13T03:41:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.