Anomaly Detection with Test Time Augmentation and Consistency Evaluation
- URL: http://arxiv.org/abs/2206.02345v1
- Date: Mon, 6 Jun 2022 04:27:06 GMT
- Title: Anomaly Detection with Test Time Augmentation and Consistency Evaluation
- Authors: Haowei He, Jiaye Teng, Yang Yuan
- Abstract summary: We propose a simple, yet effective anomaly detection algorithm named Test Time Augmentation Anomaly Detection (TTA-AD)
We observe that in-distribution data enjoy more consistent predictions for its original and augmented versions on a trained network than out-distribution data.
Experiments on various high-resolution image benchmark datasets demonstrate that TTA-AD achieves comparable or better detection performance.
- Score: 13.709281244889691
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep neural networks are known to be vulnerable to unseen data: they may
wrongly assign high confidence stcores to out-distribuion samples. Recent works
try to solve the problem using representation learning methods and specific
metrics. In this paper, we propose a simple, yet effective post-hoc anomaly
detection algorithm named Test Time Augmentation Anomaly Detection (TTA-AD),
inspired by a novel observation. Specifically, we observe that in-distribution
data enjoy more consistent predictions for its original and augmented versions
on a trained network than out-distribution data, which separates
in-distribution and out-distribution samples. Experiments on various
high-resolution image benchmark datasets demonstrate that TTA-AD achieves
comparable or better detection performance under dataset-vs-dataset anomaly
detection settings with a 60%~90\% running time reduction of existing
classifier-based algorithms. We provide empirical verification that the key to
TTA-AD lies in the remaining classes between augmented features, which has long
been partially ignored by previous works. Additionally, we use RUNS as a
surrogate to analyze our algorithm theoretically.
Related papers
- TeVAE: A Variational Autoencoder Approach for Discrete Online Anomaly Detection in Variable-state Multivariate Time-series Data [0.017476232824732776]
We propose a temporal variational autoencoder (TeVAE) that can detect anomalies with minimal false positives when trained on unlabelled data.
When properly configured, TeVAE flags anomalies only 6% of the time wrongly and detects 65% of anomalies present.
arXiv Detail & Related papers (2024-07-09T13:32:33Z) - Projection Regret: Reducing Background Bias for Novelty Detection via
Diffusion Models [72.07462371883501]
We propose emphProjection Regret (PR), an efficient novelty detection method that mitigates the bias of non-semantic information.
PR computes the perceptual distance between the test image and its diffusion-based projection to detect abnormality.
Extensive experiments demonstrate that PR outperforms the prior art of generative-model-based novelty detection methods by a significant margin.
arXiv Detail & Related papers (2023-12-05T09:44:47Z) - Listen, Adapt, Better WER: Source-free Single-utterance Test-time
Adaptation for Automatic Speech Recognition [65.84978547406753]
Test-time Adaptation aims to adapt the model trained on source domains to yield better predictions for test samples.
Single-Utterance Test-time Adaptation (SUTA) is the first TTA study in speech area to our best knowledge.
arXiv Detail & Related papers (2022-03-27T06:38:39Z) - Little Help Makes a Big Difference: Leveraging Active Learning to
Improve Unsupervised Time Series Anomaly Detection [2.1684857243537334]
A large set of anomaly detection algorithms have been deployed for detecting unexpected network incidents.
Unsupervised anomaly detection algorithms often suffer from excessive false alarms.
We propose to use active learning to introduce and benefit from the feedback of operators.
arXiv Detail & Related papers (2022-01-25T13:54:19Z) - DASVDD: Deep Autoencoding Support Vector Data Descriptor for Anomaly
Detection [9.19194451963411]
Semi-supervised anomaly detection aims to detect anomalies from normal samples using a model that is trained on normal data.
We propose a method, DASVDD, that jointly learns the parameters of an autoencoder while minimizing the volume of an enclosing hyper-sphere on its latent representation.
arXiv Detail & Related papers (2021-06-09T21:57:41Z) - Am I Rare? An Intelligent Summarization Approach for Identifying Hidden
Anomalies [0.0]
In this paper, we propose an INtelligent Summarization approach for IDENTifying hidden anomalies, called INSIDENT.
Our approach is a clustering-based algorithm that dynamically maps original feature space to a new feature space by locally weighting features in each cluster. Besides, selecting representatives based on cluster size keeps the same distribution as the original data in summarized data.
arXiv Detail & Related papers (2020-12-24T23:22:57Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z) - Generalized ODIN: Detecting Out-of-distribution Image without Learning
from Out-of-distribution Data [87.61504710345528]
We propose two strategies for freeing a neural network from tuning with OoD data, while improving its OoD detection performance.
We specifically propose to decompose confidence scoring as well as a modified input pre-processing method.
Our further analysis on a larger scale image dataset shows that the two types of distribution shifts, specifically semantic shift and non-semantic shift, present a significant difference.
arXiv Detail & Related papers (2020-02-26T04:18:25Z) - Regularized Cycle Consistent Generative Adversarial Network for Anomaly
Detection [5.457279006229213]
We propose a new Regularized Cycle Consistent Generative Adversarial Network (RCGAN) in which deep neural networks are adversarially trained to better recognize anomalous samples.
Experimental results on both real-world and synthetic data show that our model leads to significant and consistent improvements on previous anomaly detection benchmarks.
arXiv Detail & Related papers (2020-01-18T03:35:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.