論文の概要: Knowledge Embedding Based Graph Convolutional Network
- arxiv url: http://arxiv.org/abs/2006.07331v2
- Date: Fri, 23 Apr 2021 15:54:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 02:58:45.945362
- Title: Knowledge Embedding Based Graph Convolutional Network
- Title(参考訳): 知識埋め込みに基づくグラフ畳み込みネットワーク
- Authors: Donghan Yu, Yiming Yang, Ruohong Zhang, Yuexin Wu
- Abstract要約: 本稿では,知識埋め込みに基づくグラフ畳み込みネットワーク(KE-GCN)という新しいフレームワークを提案する。
KE-GCNはグラフベースの信念伝播におけるグラフ畳み込みネットワーク(GCN)のパワーと高度な知識埋め込み手法の強みを組み合わせたものである。
理論的解析により、KE-GCNはいくつかのよく知られたGCN法のエレガントな統一を具体例として示している。
- 参考スコア(独自算出の注目度): 35.35776808660919
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, a considerable literature has grown up around the theme of Graph
Convolutional Network (GCN). How to effectively leverage the rich structural
information in complex graphs, such as knowledge graphs with heterogeneous
types of entities and relations, is a primary open challenge in the field. Most
GCN methods are either restricted to graphs with a homogeneous type of edges
(e.g., citation links only), or focusing on representation learning for nodes
only instead of jointly propagating and updating the embeddings of both nodes
and edges for target-driven objectives. This paper addresses these limitations
by proposing a novel framework, namely the Knowledge Embedding based Graph
Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based
belief propagation and the strengths of advanced knowledge embedding (a.k.a.
knowledge graph embedding) methods, and goes beyond. Our theoretical analysis
shows that KE-GCN offers an elegant unification of several well-known GCN
methods as specific cases, with a new perspective of graph convolution.
Experimental results on benchmark datasets show the advantageous performance of
KE-GCN over strong baseline methods in the tasks of knowledge graph alignment
and entity classification.
- Abstract(参考訳): 最近、グラフ畳み込みネットワーク(GCN)のテーマを中心に、かなりの文献が成長している。
複素グラフにおける豊富な構造情報を効果的に活用する方法、例えば異質な実体と関係を持つ知識グラフは、この分野における主要なオープンチャレンジである。
ほとんどのGCNメソッドは、均質なエッジ(例えば、引用リンクのみ)を持つグラフに制限されているか、あるいはターゲット駆動目的のためにノードとエッジの両方の埋め込みを共同で伝播・更新する代わりにノードの表現学習に焦点を当てている。
本稿では、知識埋め込みに基づくグラフ畳み込みネットワーク(KE-GCN)という、グラフベースの信念伝播におけるGCNのパワーと高度な知識埋め込み(知識グラフ埋め込み)手法の強みを組み合わせた新しいフレームワークを提案し、その限界に対処する。
理論解析により,ke-gcnはグラフ畳み込みの新しい視点で,いくつかのよく知られたgcn法を具体例としてエレガントに統一することを示した。
ベンチマークデータセットの実験的結果は、知識グラフアライメントとエンティティ分類のタスクにおいて、強力なベースラインメソッドに対するke-gcnの利点を示している。
関連論文リスト
- Harnessing Collective Structure Knowledge in Data Augmentation for Graph Neural Networks [25.12261412297796]
グラフニューラルネットワーク(GNN)は,グラフ表現学習において最先端のパフォーマンスを達成した。
我々は新しいアプローチ、すなわち集合構造知識強化グラフニューラルネットワーク(CoS-GNN)を提案する。
論文 参考訳(メタデータ) (2024-05-17T08:50:00Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - From Cluster Assumption to Graph Convolution: Graph-based Semi-Supervised Learning Revisited [51.24526202984846]
グラフベースの半教師付き学習(GSSL)は、長い間ホットな研究トピックだった。
グラフ畳み込みネットワーク (GCN) は, 有望な性能を示す主要な技術となっている。
論文 参考訳(メタデータ) (2023-09-24T10:10:21Z) - Uncovering the Structural Fairness in Graph Contrastive Learning [87.65091052291544]
グラフコントラスト学習(GCL)は、ノード表現を学習するための有望な自己教師型アプローチとして登場した。
GCL法で得られた表現は,GCN法で学習した表現よりも既に公平であることを示す。
我々は、低次ノードと高次ノードに異なる戦略を適用し、GRAph contrastive learning for Degree bias (GRADE)と呼ばれるグラフ拡張手法を考案した。
論文 参考訳(メタデータ) (2022-10-06T15:58:25Z) - Skeleton-based Hand-Gesture Recognition with Lightweight Graph
Convolutional Networks [14.924672048447338]
グラフ畳み込みネットワーク(GCN)は、グラフのような任意の不規則領域にディープラーニングを拡張することを目的としている。
GCN設計の一環として,入力グラフのトポロジを学習する新しい手法を提案する。
骨格をベースとした手の位置認識の課題に対する実験は, 学習したGCNの高効率性を示す。
論文 参考訳(メタデータ) (2021-04-09T09:06:53Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
グラフ埋め込みは、高次元および非ユークリッド特徴空間でデータ構造を変換しエンコードする方法である。
CensNetは一般的なグラフ埋め込みフレームワークで、ノードとエッジの両方を潜在機能空間に埋め込む。
提案手法は,4つのグラフ学習課題における最先端のパフォーマンスを達成または一致させる。
論文 参考訳(メタデータ) (2020-10-25T22:39:31Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
HSI分類のための自動グラフ学習法(MGCN-AGL)を用いたマルチレベルグラフ畳み込みネットワーク(GCN)を提案する。
空間的に隣接する領域における重要度を特徴付けるために注意機構を利用することで、最も関連性の高い情報を適応的に組み込んで意思決定を行うことができる。
MGCN-AGLは局所的に生成した表現表現に基づいて画像領域間の長距離依存性を符号化する。
論文 参考訳(メタデータ) (2020-09-19T09:26:20Z) - Representation Learning of Graphs Using Graph Convolutional Multilayer
Networks Based on Motifs [17.823543937167848]
mGCMNはノードの特徴情報とグラフの高階局所構造を利用する新しいフレームワークである。
グラフニューラルネットワークの学習効率を大幅に改善し、新たな学習モードの確立を促進する。
論文 参考訳(メタデータ) (2020-07-31T04:18:20Z) - K-Core based Temporal Graph Convolutional Network for Dynamic Graphs [19.237377882738063]
動的グラフのノード表現を学習するために,新しいk-coreベースの時間グラフ畳み込みネットワークであるCTGCNを提案する。
従来の動的グラフ埋め込み法とは対照的に、CTGCNは局所的な連結近接と大域的な構造的類似性の両方を保存できる。
7つの実世界のグラフに対する実験結果から、CTGCNは既存の最先端グラフの埋め込み方法よりもいくつかのタスクで優れていることが示された。
論文 参考訳(メタデータ) (2020-03-22T14:15:27Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z) - Cross-GCN: Enhancing Graph Convolutional Network with $k$-Order Feature
Interactions [153.6357310444093]
Graph Convolutional Network(GCN)は,グラフデータの学習と推論を行う新興技術である。
我々は、GCNの既存の設計がクロスフィーチャをモデリングし、クロスフィーチャが重要であるタスクやデータに対してGCNの効率を損なうことを論じている。
我々は、任意の次交叉特徴を、特徴次元と順序サイズに線形に複雑にモデル化した、クロスフィーチャーグラフ畳み込みという新しい演算子を設計する。
論文 参考訳(メタデータ) (2020-03-05T13:05:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。