Sequential Community Mode Estimation
- URL: http://arxiv.org/abs/2111.08535v1
- Date: Tue, 16 Nov 2021 15:05:40 GMT
- Title: Sequential Community Mode Estimation
- Authors: Shubham Anand Jain, Shreyas Goenka, Divyam Bapna, Nikhil
Karamchandani, Jayakrishnan Nair
- Abstract summary: We study the problem of identifying the largest community within the population via sequential, random sampling of individuals.
We propose and analyse novel algorithms for this problem, and also establish information theoretic lower bounds on the probability of error under any algorithm.
- Score: 7.693649834261879
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider a population, partitioned into a set of communities, and study
the problem of identifying the largest community within the population via
sequential, random sampling of individuals. There are multiple sampling
domains, referred to as \emph{boxes}, which also partition the population. Each
box may consist of individuals of different communities, and each community may
in turn be spread across multiple boxes. The learning agent can, at any time,
sample (with replacement) a random individual from any chosen box; when this is
done, the agent learns the community the sampled individual belongs to, and
also whether or not this individual has been sampled before. The goal of the
agent is to minimize the probability of mis-identifying the largest community
in a \emph{fixed budget} setting, by optimizing both the sampling strategy as
well as the decision rule. We propose and analyse novel algorithms for this
problem, and also establish information theoretic lower bounds on the
probability of error under any algorithm. In several cases of interest, the
exponential decay rates of the probability of error under our algorithms are
shown to be optimal up to constant factors. The proposed algorithms are further
validated via simulations on real-world datasets.
Related papers
- Scalable Decentralized Algorithms for Online Personalized Mean Estimation [12.002609934938224]
This study focuses on a simplified version of the overarching problem, where each agent collects samples from a real-valued distribution over time to estimate its mean.
We introduce two collaborative mean estimation algorithms: one draws inspiration from belief propagation, while the other employs a consensus-based approach.
arXiv Detail & Related papers (2024-02-20T08:30:46Z) - Optimal Multi-Distribution Learning [88.3008613028333]
Multi-distribution learning seeks to learn a shared model that minimizes the worst-case risk across $k$ distinct data distributions.
We propose a novel algorithm that yields an varepsilon-optimal randomized hypothesis with a sample complexity on the order of (d+k)/varepsilon2.
arXiv Detail & Related papers (2023-12-08T16:06:29Z) - Bivariate Estimation-of-Distribution Algorithms Can Find an Exponential
Number of Optima [12.009357100208353]
We propose the test function EqualBlocksOneMax (EBOM) to support the study of how optimization algorithms handle large sets of optima.
We show that EBOM behaves very similarly to a theoretically ideal model for EBOM, which samples each of the exponentially many optima with the same maximal probability.
arXiv Detail & Related papers (2023-10-06T06:32:07Z) - Factorization of Multi-Agent Sampling-Based Motion Planning [72.42734061131569]
Modern robotics often involves multiple embodied agents operating within a shared environment.
Standard sampling-based algorithms can be used to search for solutions in the robots' joint space.
We integrate the concept of factorization into sampling-based algorithms, which requires only minimal modifications to existing methods.
We present a general implementation of a factorized SBA, derive an analytical gain in terms of sample complexity for PRM*, and showcase empirical results for RRG.
arXiv Detail & Related papers (2023-04-01T15:50:18Z) - Is it easier to count communities than find them? [82.90505487525533]
We consider certain hypothesis testing problems between models with different community structures.
We show that testing between two options is as hard as finding the communities.
arXiv Detail & Related papers (2022-12-21T09:35:19Z) - BRIO: Bringing Order to Abstractive Summarization [107.97378285293507]
We propose a novel training paradigm which assumes a non-deterministic distribution.
Our method achieves a new state-of-the-art result on the CNN/DailyMail (47.78 ROUGE-1) and XSum (49.07 ROUGE-1) datasets.
arXiv Detail & Related papers (2022-03-31T05:19:38Z) - Optimal Clustering with Bandit Feedback [57.672609011609886]
This paper considers the problem of online clustering with bandit feedback.
It includes a novel stopping rule for sequential testing that circumvents the need to solve any NP-hard weighted clustering problem as its subroutines.
We show through extensive simulations on synthetic and real-world datasets that BOC's performance matches the lower boundally, and significantly outperforms a non-adaptive baseline algorithm.
arXiv Detail & Related papers (2022-02-09T06:05:05Z) - Population based change-point detection for the identification of
homozygosity islands [0.0]
We introduce a penalized maximum likelihood approach that can be efficiently computed by a dynamic programming algorithm or approximated by a fast greedy binary splitting algorithm.
We prove both algorithms converge almost surely to the set of change-points under very general assumptions on the distribution and independent sampling of the random vector.
This new approach is motivated by the problem of identifying homozygosity islands on the genome of individuals in a population.
arXiv Detail & Related papers (2021-11-19T12:53:41Z) - Local policy search with Bayesian optimization [73.0364959221845]
Reinforcement learning aims to find an optimal policy by interaction with an environment.
Policy gradients for local search are often obtained from random perturbations.
We develop an algorithm utilizing a probabilistic model of the objective function and its gradient.
arXiv Detail & Related papers (2021-06-22T16:07:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.