A Data-Driven Approach for Linear and Nonlinear Damage Detection Using
Variational Mode Decomposition and GARCH Model
- URL: http://arxiv.org/abs/2111.08620v1
- Date: Tue, 16 Nov 2021 17:01:26 GMT
- Title: A Data-Driven Approach for Linear and Nonlinear Damage Detection Using
Variational Mode Decomposition and GARCH Model
- Authors: Vahid Reza Gharehbaghi, Hashem Kalbkhani, Ehsan Noroozinejad Farsangi,
T.Y. Yang, Seyedali Mirjalili
- Abstract summary: The method deploys variational mode decomposition (VMD) and a generalised autoregressive conditional heteroscedasticity (GARCH) model for signal processing and feature extraction.
The performance of the proposed method is evaluated on two experimentally scaled models in terms of linear and nonlinear damage assessment.
- Score: 13.183011809131235
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this article, an original data-driven approach is proposed to detect both
linear and nonlinear damage in structures using output-only responses. The
method deploys variational mode decomposition (VMD) and a generalised
autoregressive conditional heteroscedasticity (GARCH) model for signal
processing and feature extraction. To this end, VMD decomposes the response
signals into intrinsic mode functions (IMFs). Afterwards, the GARCH model is
utilised to represent the statistics of IMFs. The model coefficients of IMFs
construct the primary feature vector. Kernel-based principal component analysis
(PCA) and linear discriminant analysis (LDA) are utilised to reduce the
redundancy of the primary features by mapping them to the new feature space.
The informative features are then fed separately into three supervised
classifiers, namely support vector machine (SVM), k-nearest neighbour (kNN),
and fine tree. The performance of the proposed method is evaluated on two
experimentally scaled models in terms of linear and nonlinear damage
assessment. Kurtosis and ARCH tests proved the compatibility of the GARCH
model.
Related papers
- Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
Causal models seek to unravel the cause-effect relationships among variables from observed data.
This paper introduces a novel causal discovery algorithm designed for settings in which variables exhibit linearly sparse relationships.
arXiv Detail & Related papers (2024-10-02T04:01:38Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
We propose a lightweight module called Dual Attention Module (DAM) for capturing cross-dimension interaction relationships in-temporal skeletal data.
It employs the frame attention mechanism to identify the most significant frames and the skeleton attention mechanism to capture broader relationships across fixed partitions with minimal parameters and flops.
arXiv Detail & Related papers (2024-06-05T06:18:03Z) - Fusing Dictionary Learning and Support Vector Machines for Unsupervised Anomaly Detection [1.5999407512883508]
We introduce a new anomaly detection model that unifies the OC-SVM and DL residual functions into a single composite objective.
We extend both objectives to the more general setting that allows the use of kernel functions.
arXiv Detail & Related papers (2024-04-05T12:41:53Z) - Preventing Model Collapse in Gaussian Process Latent Variable Models [11.45681373843122]
This paper theoretically examines the impact of projection variance on model collapse through the lens of a linear FourierVM.
We tackle model collapse due to inadequate kernel flexibility by integrating the spectral mixture (SM) kernel and a differentiable random feature (RFF) kernel approximation.
The proposedVM, named advisedRFLVM, is evaluated across diverse datasets and consistently outperforms various competing models.
arXiv Detail & Related papers (2024-04-02T06:58:41Z) - Solving Inverse Problems with Model Mismatch using Untrained Neural Networks within Model-based Architectures [14.551812310439004]
We introduce an untrained forward model residual block within the model-based architecture to match the data consistency in the measurement domain for each instance.
Our approach offers a unified solution that is less parameter-sensitive, requires no additional data, and enables simultaneous fitting of the forward model and reconstruction in a single pass.
arXiv Detail & Related papers (2024-03-07T19:02:13Z) - Weakly supervised covariance matrices alignment through Stiefel matrices
estimation for MEG applications [64.20396555814513]
This paper introduces a novel domain adaptation technique for time series data, called Mixing model Stiefel Adaptation (MSA)
We exploit abundant unlabeled data in the target domain to ensure effective prediction by establishing pairwise correspondence with equivalent signal variances between domains.
MSA outperforms recent methods in brain-age regression with task variations using magnetoencephalography (MEG) signals from the Cam-CAN dataset.
arXiv Detail & Related papers (2024-01-24T19:04:49Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
Differentiable causal discovery has proposed to factorize the data generating process into a set of modules.
We study the generalization and adaption performance of such modular neural causal models.
Our analysis shows that the modular neural causal models outperform other models on both zero and few-shot adaptation in low data regimes.
arXiv Detail & Related papers (2022-06-09T17:12:32Z) - A connection between the pattern classification problem and the General
Linear Model for statistical inference [0.2320417845168326]
Both approaches, i.e. GLM and LRM, apply to different domains, the observation and the label domains.
We derive a statistical test based on a more refined predictive algorithm.
The MLE-based inference employs a residual score and includes the upper bound to compute a better estimation of the actual (real) error.
arXiv Detail & Related papers (2020-12-16T12:26:26Z) - Derivative-Based Koopman Operators for Real-Time Control of Robotic
Systems [14.211417879279075]
This paper presents a generalizable methodology for data-driven identification of nonlinear dynamics that bounds the model error.
We construct a Koopman operator-based linear representation and utilize Taylor series accuracy analysis to derive an error bound.
When combined with control, the Koopman representation of the nonlinear system has marginally better performance than competing nonlinear modeling methods.
arXiv Detail & Related papers (2020-10-12T15:15:13Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affine models guarantees universal approximation, local linearity and equivalence to other classes of hybrid system.
In this work, we focus on the identification of PieceWise Auto Regressive with eXogenous input models with arbitrary regions (NPWARX)
The architecture is conceived following the Mixture of Expert concept, developed within the machine learning field.
arXiv Detail & Related papers (2020-09-29T12:50:33Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.