DeltaConv: Anisotropic Point Cloud Learning with Exterior Calculus
- URL: http://arxiv.org/abs/2111.08799v2
- Date: Thu, 18 Nov 2021 15:28:44 GMT
- Title: DeltaConv: Anisotropic Point Cloud Learning with Exterior Calculus
- Authors: Ruben Wiersma, Ahmad Nasikun, Elmar Eisemann, Klaus Hildebrandt
- Abstract summary: We introduce a new convolution operator called DeltaConv, which combines geometric operators from exterior calculus to enable the construction of anisotropic filters on point clouds.
Our convolutions are robust and simple to implement and show improved accuracy compared to state-of-the-art approaches on several benchmarks.
- Score: 13.18401177210079
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning from 3D point-cloud data has rapidly gained momentum, motivated by
the success of deep learning on images and the increased availability of 3D
data. In this paper, we aim to construct anisotropic convolutions that work
directly on the surface derived from a point cloud. This is challenging because
of the lack of a global coordinate system for tangential directions on
surfaces. We introduce a new convolution operator called DeltaConv, which
combines geometric operators from exterior calculus to enable the construction
of anisotropic filters on point clouds. Because these operators are defined on
scalar- and vector-fields, we separate the network into a scalar- and a
vector-stream, which are connected by the operators. The vector stream enables
the network to explicitly represent, evaluate, and process directional
information. Our convolutions are robust and simple to implement and show
improved accuracy compared to state-of-the-art approaches on several
benchmarks, while also speeding up training and inference.
Related papers
- RIConv++: Effective Rotation Invariant Convolutions for 3D Point Clouds
Deep Learning [32.18566879365623]
3D point clouds deep learning is a promising field of research that allows a neural network to learn features of point clouds directly.
We propose a simple yet effective convolution operator that enhances feature distinction by designing powerful rotation invariant features from the local regions.
Our network architecture can capture both local and global context by simply tuning the neighborhood size in each convolution layer.
arXiv Detail & Related papers (2022-02-26T08:32:44Z) - UPDesc: Unsupervised Point Descriptor Learning for Robust Registration [54.95201961399334]
UPDesc is an unsupervised method to learn point descriptors for robust point cloud registration.
We show that our learned descriptors yield superior performance over existing unsupervised methods.
arXiv Detail & Related papers (2021-08-05T17:11:08Z) - SCTN: Sparse Convolution-Transformer Network for Scene Flow Estimation [71.2856098776959]
Estimating 3D motions for point clouds is challenging, since a point cloud is unordered and its density is significantly non-uniform.
We propose a novel architecture named Sparse Convolution-Transformer Network (SCTN) that equips the sparse convolution with the transformer.
We show that the learned relation-based contextual information is rich and helpful for matching corresponding points, benefiting scene flow estimation.
arXiv Detail & Related papers (2021-05-10T15:16:14Z) - Deep Parametric Continuous Convolutional Neural Networks [92.87547731907176]
Parametric Continuous Convolution is a new learnable operator that operates over non-grid structured data.
Our experiments show significant improvement over the state-of-the-art in point cloud segmentation of indoor and outdoor scenes.
arXiv Detail & Related papers (2021-01-17T18:28:23Z) - Learning Rotation-Invariant Representations of Point Clouds Using
Aligned Edge Convolutional Neural Networks [29.3830445533532]
Point cloud analysis is an area of increasing interest due to the development of 3D sensors that are able to rapidly measure the depth of scenes accurately.
Applying deep learning techniques to perform point cloud analysis is non-trivial due to the inability of these methods to generalize to unseen rotations.
To address this limitation, one usually has to augment the training data, which can lead to extra computation and require larger model complexity.
This paper proposes a new neural network called the Aligned Edge Convolutional Neural Network (AECNN) that learns a feature representation of point clouds relative to Local Reference Frames (LRFs)
arXiv Detail & Related papers (2021-01-02T17:36:00Z) - Spherical Interpolated Convolutional Network with Distance-Feature
Density for 3D Semantic Segmentation of Point Clouds [24.85151376535356]
Spherical interpolated convolution operator is proposed to replace the traditional grid-shaped 3D convolution operator.
The proposed method achieves good performance on the ScanNet dataset and Paris-Lille-3D dataset.
arXiv Detail & Related papers (2020-11-27T15:35:12Z) - Neural-Pull: Learning Signed Distance Functions from Point Clouds by
Learning to Pull Space onto Surfaces [68.12457459590921]
Reconstructing continuous surfaces from 3D point clouds is a fundamental operation in 3D geometry processing.
We introduce textitNeural-Pull, a new approach that is simple and leads to high quality SDFs.
arXiv Detail & Related papers (2020-11-26T23:18:10Z) - DV-ConvNet: Fully Convolutional Deep Learning on Point Clouds with
Dynamic Voxelization and 3D Group Convolution [0.7340017786387767]
3D point cloud interpretation is a challenging task due to the randomness and sparsity of the component points.
In this work, we draw attention back to the standard 3D convolutions towards an efficient 3D point cloud interpretation.
Our network is able to run and converge at a considerably fast speed, while yields on-par or even better performance compared with the state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2020-09-07T07:45:05Z) - Pseudo-LiDAR Point Cloud Interpolation Based on 3D Motion Representation
and Spatial Supervision [68.35777836993212]
We propose a Pseudo-LiDAR point cloud network to generate temporally and spatially high-quality point cloud sequences.
By exploiting the scene flow between point clouds, the proposed network is able to learn a more accurate representation of the 3D spatial motion relationship.
arXiv Detail & Related papers (2020-06-20T03:11:04Z) - Quaternion Equivariant Capsule Networks for 3D Point Clouds [58.566467950463306]
We present a 3D capsule module for processing point clouds that is equivariant to 3D rotations and translations.
We connect dynamic routing between capsules to the well-known Weiszfeld algorithm.
Based on our operator, we build a capsule network that disentangles geometry from pose.
arXiv Detail & Related papers (2019-12-27T13:51:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.