FAIRLEARN:Configurable and Interpretable Algorithmic Fairness
- URL: http://arxiv.org/abs/2111.08878v1
- Date: Wed, 17 Nov 2021 03:07:18 GMT
- Title: FAIRLEARN:Configurable and Interpretable Algorithmic Fairness
- Authors: Ankit Kulshrestha, Ilya Safro
- Abstract summary: There is a need to mitigate any bias arising from either training samples or implicit assumptions made about the data samples.
Many approaches have been proposed to make learning algorithms fair by detecting and mitigating bias in different stages of optimization.
We propose the FAIRLEARN procedure that produces a fair algorithm by incorporating user constraints into the optimization procedure.
- Score: 1.2183405753834557
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid growth of data in the recent years has led to the development of
complex learning algorithms that are often used to make decisions in real
world. While the positive impact of the algorithms has been tremendous, there
is a need to mitigate any bias arising from either training samples or implicit
assumptions made about the data samples. This need becomes critical when
algorithms are used in automated decision making systems that can hugely impact
people's lives.
Many approaches have been proposed to make learning algorithms fair by
detecting and mitigating bias in different stages of optimization. However, due
to a lack of a universal definition of fairness, these algorithms optimize for
a particular interpretation of fairness which makes them limited for real world
use. Moreover, an underlying assumption that is common to all algorithms is the
apparent equivalence of achieving fairness and removing bias. In other words,
there is no user defined criteria that can be incorporated into the
optimization procedure for producing a fair algorithm. Motivated by these
shortcomings of existing methods, we propose the FAIRLEARN procedure that
produces a fair algorithm by incorporating user constraints into the
optimization procedure. Furthermore, we make the process interpretable by
estimating the most predictive features from data. We demonstrate the efficacy
of our approach on several real world datasets using different fairness
criteria.
Related papers
- Loss Balancing for Fair Supervised Learning [20.13250413610897]
Supervised learning models have been used in various domains such as lending, college admission, face recognition, natural language processing, etc.
Various notions have been proposed to address the unfairness predictor on the learning process (EL)
arXiv Detail & Related papers (2023-11-07T04:36:13Z) - Boosting Fair Classifier Generalization through Adaptive Priority Reweighing [59.801444556074394]
A performance-promising fair algorithm with better generalizability is needed.
This paper proposes a novel adaptive reweighing method to eliminate the impact of the distribution shifts between training and test data on model generalizability.
arXiv Detail & Related papers (2023-09-15T13:04:55Z) - Measuring, Interpreting, and Improving Fairness of Algorithms using
Causal Inference and Randomized Experiments [8.62694928567939]
We present an algorithm-agnostic framework (MIIF) to Measure, Interpret, and Improve the Fairness of an algorithmic decision.
We measure the algorithm bias using randomized experiments, which enables the simultaneous measurement of disparate treatment, disparate impact, and economic value.
We also develop an explainable machine learning model which accurately interprets and distills the beliefs of a blackbox algorithm.
arXiv Detail & Related papers (2023-09-04T19:45:18Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
There is a certain consensus about the need to develop AI applications with a Human-Centric approach.
Human-Centric Machine Learning needs to be developed based on four main requirements: (i) utility and social good; (ii) privacy and data ownership; (iii) transparency and accountability; and (iv) fairness in AI-driven decision-making processes.
We study how current multimodal algorithms based on heterogeneous sources of information are affected by sensitive elements and inner biases in the data.
arXiv Detail & Related papers (2023-02-13T16:44:44Z) - Stochastic Differentially Private and Fair Learning [7.971065005161566]
We provide the first differentially private algorithm for fair learning that is guaranteed to converge.
Our framework is flexible enough to permit different fairness, including demographic parity and equalized odds.
Our algorithm can be applied to non-binary classification tasks with multiple (non-binary) sensitive attributes.
arXiv Detail & Related papers (2022-10-17T06:54:57Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms.
For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime.
In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem.
We adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon.
arXiv Detail & Related papers (2021-09-13T18:10:52Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - Individually Fair Gradient Boosting [86.1984206610373]
We consider the task of enforcing individual fairness in gradient boosting.
We show that our algorithm converges globally and generalizes.
We also demonstrate the efficacy of our algorithm on three ML problems susceptible to algorithmic bias.
arXiv Detail & Related papers (2021-03-31T03:06:57Z) - Coping with Mistreatment in Fair Algorithms [1.2183405753834557]
We study the algorithmic fairness in a supervised learning setting and examine the effect of optimizing a classifier for the Equal Opportunity metric.
We propose a conceptually simple method to mitigate this bias.
We rigorously analyze the proposed method and evaluate it on several real world datasets demonstrating its efficacy.
arXiv Detail & Related papers (2021-02-22T03:26:06Z) - Metrics and methods for a systematic comparison of fairness-aware
machine learning algorithms [0.0]
This study is the most comprehensive of its kind.
It considers fairness, predictive-performance, calibration quality, and speed of 28 different modelling pipelines.
We also found that fairness-aware algorithms can induce fairness without material drops in predictive power.
arXiv Detail & Related papers (2020-10-08T13:58:09Z) - Run2Survive: A Decision-theoretic Approach to Algorithm Selection based
on Survival Analysis [75.64261155172856]
survival analysis (SA) naturally supports censored data and offers appropriate ways to use such data for learning distributional models of algorithm runtime.
We leverage such models as a basis of a sophisticated decision-theoretic approach to algorithm selection, which we dub Run2Survive.
In an extensive experimental study with the standard benchmark ASlib, our approach is shown to be highly competitive and in many cases even superior to state-of-the-art AS approaches.
arXiv Detail & Related papers (2020-07-06T15:20:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.