Inference for an Algorithmic Fairness-Accuracy Frontier
- URL: http://arxiv.org/abs/2402.08879v2
- Date: Fri, 13 Jun 2025 21:49:26 GMT
- Title: Inference for an Algorithmic Fairness-Accuracy Frontier
- Authors: Yiqi Liu, Francesca Molinari,
- Abstract summary: We propose a debiased machine learning estimator for the fairness-accuracy frontier.<n>We derive its distribution and propose inference methods to test key hypotheses in the fairness literature.<n>We show that our approach yields alternative algorithms that lie on the fairness-accuracy frontier, offering improvements along both dimensions.
- Score: 0.7743097066308449
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Algorithms are increasingly used to aid with high-stakes decision making. Yet, their predictive ability frequently exhibits systematic variation across population subgroups. To assess the trade-off between fairness and accuracy using finite data, we propose a debiased machine learning estimator for the fairness-accuracy frontier introduced by Liang, Lu, Mu, and Okumura (2024). We derive its asymptotic distribution and propose inference methods to test key hypotheses in the fairness literature, such as (i) whether excluding group identity from use in training the algorithm is optimal and (ii) whether there are less discriminatory alternatives to a given algorithm. In addition, we construct an estimator for the distance between a given algorithm and the fairest point on the frontier, and characterize its asymptotic distribution. Using Monte Carlo simulations, we evaluate the finite-sample performance of our inference methods. We apply our framework to re-evaluate algorithms used in hospital care management and show that our approach yields alternative algorithms that lie on the fairness-accuracy frontier, offering improvements along both dimensions.
Related papers
- Asymptotically Optimal Linear Best Feasible Arm Identification with Fixed Budget [55.938644481736446]
We introduce a novel algorithm for best feasible arm identification that guarantees an exponential decay in the error probability.<n>We validate our algorithm through comprehensive empirical evaluations across various problem instances with different levels of complexity.
arXiv Detail & Related papers (2025-06-03T02:56:26Z) - Targeted Learning for Data Fairness [52.59573714151884]
We expand fairness inference by evaluating fairness in the data generating process itself.<n>We derive estimators demographic parity, equal opportunity, and conditional mutual information.<n>To validate our approach, we perform several simulations and apply our estimators to real data.
arXiv Detail & Related papers (2025-02-06T18:51:28Z) - Fairness with Exponential Weights [4.368185344922342]
Motivated by the need to remove discrimination in certain applications, we develop a meta-algorithm that can convert any efficient implementation of Hedge into an efficient for the equivalent contextual bandit problem.
Relative to any algorithm with statistical parity, the resulting algorithm has the same regret bound as running the corresponding instance of Exp4 for each protected characteristic independently.
arXiv Detail & Related papers (2024-11-06T22:25:56Z) - On Policy Evaluation Algorithms in Distributional Reinforcement Learning [0.0]
We introduce a novel class of algorithms to efficiently approximate the unknown return distributions in policy evaluation problems from distributional reinforcement learning (DRL)
For a plain instance of our proposed class of algorithms we prove error bounds, both within Wasserstein and Kolmogorov--Smirnov distances.
For return distributions having probability density functions the algorithms yield approximations for these densities; error bounds are given within supremum norm.
arXiv Detail & Related papers (2024-07-19T10:06:01Z) - On the Maximal Local Disparity of Fairness-Aware Classifiers [35.98015221840018]
We propose a novel fairness metric called Maximal Cumulative ratio Disparity along varying Predictions' neighborhood (MCDP)
To accurately and efficiently calculate the MCDP, we develop a provably exact and an approximate calculation algorithm that greatly reduces the computational complexity with low estimation error.
arXiv Detail & Related papers (2024-06-05T13:35:48Z) - Non-Convex Robust Hypothesis Testing using Sinkhorn Uncertainty Sets [18.46110328123008]
We present a new framework to address the non-robust hypothesis testing problem.
The goal is to seek the optimal detector that minimizes the maximum numerical risk.
arXiv Detail & Related papers (2024-03-21T20:29:43Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Online POMDP Planning with Anytime Deterministic Guarantees [11.157761902108692]
Planning under uncertainty can be mathematically formalized using partially observable Markov decision processes (POMDPs)
Finding an optimal plan for POMDPs can be computationally expensive and is feasible only for small tasks.
We derive a deterministic relationship between a simplified solution that is easier to obtain and the theoretically optimal one.
arXiv Detail & Related papers (2023-10-03T04:40:38Z) - Provably Efficient Learning in Partially Observable Contextual Bandit [4.910658441596583]
We show how causal bounds can be applied to improving classical bandit algorithms.
This research has the potential to enhance the performance of contextual bandit agents in real-world applications.
arXiv Detail & Related papers (2023-08-07T13:24:50Z) - Online Heavy-tailed Change-point detection [6.7643284029102295]
We present an algorithm based on clipped Gradient Descent (SGD), that works even if we only assume that the second moment of the data generating process is bounded.
We derive guarantees on worst-case, finite-sample false-positive rate (FPR) over the family of all distributions with bounded second moment.
Our method is the first OCPD algorithm that guarantees finite-sample FPR, even if the data is high dimensional and the underlying distributions are heavy-tailed.
arXiv Detail & Related papers (2023-06-15T23:39:05Z) - Fully Stochastic Trust-Region Sequential Quadratic Programming for
Equality-Constrained Optimization Problems [62.83783246648714]
We propose a sequential quadratic programming algorithm (TR-StoSQP) to solve nonlinear optimization problems with objectives and deterministic equality constraints.
The algorithm adaptively selects the trust-region radius and, compared to the existing line-search StoSQP schemes, allows us to utilize indefinite Hessian matrices.
arXiv Detail & Related papers (2022-11-29T05:52:17Z) - Structural Estimation of Markov Decision Processes in High-Dimensional
State Space with Finite-Time Guarantees [39.287388288477096]
We consider the task of estimating a structural model of dynamic decisions by a human agent based upon the observable history of implemented actions and visited states.
This problem has an inherent nested structure: in the inner problem, an optimal policy for a given reward function is identified while in the outer problem, a measure of fit is maximized.
We propose a single-loop estimation algorithm with finite time guarantees that is equipped to deal with high-dimensional state spaces.
arXiv Detail & Related papers (2022-10-04T00:11:38Z) - FAIRLEARN:Configurable and Interpretable Algorithmic Fairness [1.2183405753834557]
There is a need to mitigate any bias arising from either training samples or implicit assumptions made about the data samples.
Many approaches have been proposed to make learning algorithms fair by detecting and mitigating bias in different stages of optimization.
We propose the FAIRLEARN procedure that produces a fair algorithm by incorporating user constraints into the optimization procedure.
arXiv Detail & Related papers (2021-11-17T03:07:18Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
We propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation.
Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle.
We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration on out-of-distribution inputs.
arXiv Detail & Related papers (2020-11-05T08:04:34Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
We introduce a novel algorithm improving over the state-of-the-art along multiple dimensions.
We establish minimax optimality for any learning horizon in the special case of non-contextual linear bandits.
arXiv Detail & Related papers (2020-10-23T09:12:47Z) - Large-Scale Methods for Distributionally Robust Optimization [53.98643772533416]
We prove that our algorithms require a number of evaluations gradient independent of training set size and number of parameters.
Experiments on MNIST and ImageNet confirm the theoretical scaling of our algorithms, which are 9--36 times more efficient than full-batch methods.
arXiv Detail & Related papers (2020-10-12T17:41:44Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z) - A Distributional Analysis of Sampling-Based Reinforcement Learning
Algorithms [67.67377846416106]
We present a distributional approach to theoretical analyses of reinforcement learning algorithms for constant step-sizes.
We show that value-based methods such as TD($lambda$) and $Q$-Learning have update rules which are contractive in the space of distributions of functions.
arXiv Detail & Related papers (2020-03-27T05:13:29Z) - Scalable Approximate Inference and Some Applications [2.6541211006790983]
In this thesis, we propose a new framework for approximate inference.
Our proposed four algorithms are motivated by the recent computational progress of Stein's method.
Results on simulated and real datasets indicate the statistical efficiency and wide applicability of our algorithm.
arXiv Detail & Related papers (2020-03-07T04:33:27Z) - A General Method for Robust Learning from Batches [56.59844655107251]
We consider a general framework of robust learning from batches, and determine the limits of both classification and distribution estimation over arbitrary, including continuous, domains.
We derive the first robust computationally-efficient learning algorithms for piecewise-interval classification, and for piecewise-polynomial, monotone, log-concave, and gaussian-mixture distribution estimation.
arXiv Detail & Related papers (2020-02-25T18:53:25Z) - Boosting Algorithms for Estimating Optimal Individualized Treatment
Rules [4.898659895355356]
We present nonparametric algorithms for estimating optimal individualized treatment rules.
The proposed algorithms are based on the XGBoost algorithm, which is known as one of the most powerful algorithms in the machine learning literature.
arXiv Detail & Related papers (2020-01-31T22:26:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.