論文の概要: Towards Interpretable and Reliable Reading Comprehension: A Pipeline
Model with Unanswerability Prediction
- arxiv url: http://arxiv.org/abs/2111.09029v1
- Date: Wed, 17 Nov 2021 10:47:47 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-18 14:45:48.034925
- Title: Towards Interpretable and Reliable Reading Comprehension: A Pipeline
Model with Unanswerability Prediction
- Title(参考訳): 解釈可能で信頼性の高い読み理解に向けて : 予測不能なパイプラインモデル
- Authors: Kosuke Nishida, Kyosuke Nishida, Itsumi Saito, Sen Yoshida
- Abstract要約: 我々は、解釈不能なクエリを予測できるパイプラインモデルとして、解釈可能な読解理解(IRC)モデルを定義する。
IRCモデルは、予測された支持事実と解釈可能性の実際の理論的根拠との整合性を確立することにより、回答予測を正当化する。
我々のエンドツーエンドのトレーニング可能なパイプラインモデルは、修正されたHotpotQAデータセットで非解釈可能なモデルよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 6.524831776235361
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-hop QA with annotated supporting facts, which is the task of reading
comprehension (RC) considering the interpretability of the answer, has been
extensively studied. In this study, we define an interpretable reading
comprehension (IRC) model as a pipeline model with the capability of predicting
unanswerable queries. The IRC model justifies the answer prediction by
establishing consistency between the predicted supporting facts and the actual
rationale for interpretability. The IRC model detects unanswerable questions,
instead of outputting the answer forcibly based on the insufficient
information, to ensure the reliability of the answer. We also propose an
end-to-end training method for the pipeline RC model. To evaluate the
interpretability and the reliability, we conducted the experiments considering
unanswerability in a multi-hop question for a given passage. We show that our
end-to-end trainable pipeline model outperformed a non-interpretable model on
our modified HotpotQA dataset. Experimental results also show that the IRC
model achieves comparable results to the previous non-interpretable models in
spite of the trade-off between prediction performance and interpretability.
- Abstract(参考訳): 回答の解釈可能性を考慮した読解(RC)課題である注釈付きサポート事実を持つマルチホップQAについて検討した。
本研究では,解釈不能な問合せを予測可能なパイプラインモデルとして解釈可能な読解理解(IRC)モデルを定義する。
IRCモデルは、予測された支持事実と解釈可能性の実際の理論的根拠との整合性を確立することにより、回答予測を正当化する。
ircモデルは、十分な情報に基づいて強制的に回答を出力するのではなく、解答不能な質問を検出し、解答の信頼性を確保する。
また,パイプラインRCモデルのエンドツーエンドトレーニング手法を提案する。
解釈可能性と信頼性を評価するために,各経路に対するマルチホップ質問の解答可能性を考慮した実験を行った。
我々のエンドツーエンドのトレーニング可能なパイプラインモデルは、修正されたHotpotQAデータセットで非解釈可能なモデルよりも優れていることを示す。
また, 予測性能と解釈可能性のトレードオフにもかかわらず, IRCモデルは従来の非解釈モデルと同等の結果が得られることを示した。
関連論文リスト
- Uncertainty-aware Language Modeling for Selective Question Answering [107.47864420630923]
本稿では,不確実性を考慮したLLMを生成するLLM変換手法を提案する。
我々のアプローチはモデルとデータに依存しず、計算効率が高く、外部モデルやシステムに依存しない。
論文 参考訳(メタデータ) (2023-11-26T22:47:54Z) - Counterfactuals of Counterfactuals: a back-translation-inspired approach
to analyse counterfactual editors [3.4253416336476246]
我々は、反事実的、対照的な説明の分析に焦点をあてる。
本稿では,新しい逆翻訳に基づく評価手法を提案する。
本研究では, 予測モデルと説明モデルの両方の振る舞いについて, 反事実を反復的に説明者に与えることで, 価値ある洞察を得ることができることを示す。
論文 参考訳(メタデータ) (2023-05-26T16:04:28Z) - Explaining Language Models' Predictions with High-Impact Concepts [11.47612457613113]
概念ベースの解釈可能性手法をNLPに拡張するための完全なフレームワークを提案する。
出力予測が大幅に変化する特徴を最適化する。
本手法は, ベースラインと比較して, 予測的影響, ユーザビリティ, 忠実度に関する優れた結果が得られる。
論文 参考訳(メタデータ) (2023-05-03T14:48:27Z) - Knowledge-Based Counterfactual Queries for Visual Question Answering [0.0]
本稿では,VQAモデルの動作を説明するための系統的手法を提案する。
そこで我々は,言語的モダリティをターゲットとした決定論的,最適,制御可能な単語レベルの置換を行うために,構造化知識ベースを利用する。
次に、そのような反実的な入力に対するモデルの応答を評価する。
論文 参考訳(メタデータ) (2023-03-05T08:00:30Z) - Realistic Conversational Question Answering with Answer Selection based
on Calibrated Confidence and Uncertainty Measurement [54.55643652781891]
対話型質問回答モデル(ConvQA)は,会話中に複数回発生した質問文と過去の質問文のペアを用いて質問に回答することを目的としている。
本稿では,会話履歴における不正確な回答を,ConvQAモデルから推定された信頼度と不確実性に基づいてフィルタリングすることを提案する。
我々は2つの標準ConvQAデータセット上で、回答選択に基づくリアルな会話質問回答モデルの有効性を検証する。
論文 参考訳(メタデータ) (2023-02-10T09:42:07Z) - Logical Satisfiability of Counterfactuals for Faithful Explanations in
NLI [60.142926537264714]
本稿では, 忠実度スルー・カウンタファクトの方法論について紹介する。
これは、説明に表される論理述語に基づいて、反実仮説を生成する。
そして、そのモデルが表現された論理と反ファクトの予測が一致しているかどうかを評価する。
論文 参考訳(メタデータ) (2022-05-25T03:40:59Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
我々はクラウドソーシング研究を行い、真偽のホテルレビューと偽のホテルレビューを区別するために訓練された詐欺検出モデルと対話する。
単語の線形バッグモデルでは、トレーニング中に特徴係数にアクセスした参加者は、非説明制御と比較して、テストフェーズにおいてモデルの信頼性が大幅に低下する可能性があることを観察する。
論文 参考訳(メタデータ) (2021-12-17T18:29:56Z) - On the Lack of Robust Interpretability of Neural Text Classifiers [14.685352584216757]
本研究では,事前学習したトランスフォーマーエンコーダをベースとしたニューラルテキスト分類器の解釈の堅牢性を評価する。
どちらのテストも、期待された行動から驚くほど逸脱しており、実践者が解釈から引き出す可能性のある洞察の程度について疑問を呈している。
論文 参考訳(メタデータ) (2021-06-08T18:31:02Z) - Paired Examples as Indirect Supervision in Latent Decision Models [109.76417071249945]
我々は、ペア化された例を活用して、潜在的な決定を学習するためのより強力な手がかりを提供する方法を紹介します。
DROPデータセット上のニューラルネットワークを用いた合成質問応答の改善に本手法を適用した。
論文 参考訳(メタデータ) (2021-04-05T03:58:30Z) - An Investigation of Language Model Interpretability via Sentence Editing [5.492504126672887]
我々は、事前学習言語モデル(PLM)の解釈可能性をテストするテストベッドとして、文編集データセットを再使用した。
これにより、PLMの解釈可能性に関する一連の質問に対して、系統的な調査を行うことができる。
この調査は、例えば、一般的な理解とは対照的に、注意重みが人間の合理性とよく相関しているという新たな洞察を生み出す。
論文 参考訳(メタデータ) (2020-11-28T00:46:43Z) - Counterfactual Variable Control for Robust and Interpretable Question
Answering [57.25261576239862]
ディープニューラルネットワークに基づく質問応答(QA)モデルは、多くの場合、堅牢でも説明もできない。
本稿では、因果推論を用いてQAモデルのこのような突発的な「能力」を検証する。
本稿では,任意のショートカット相関を明示的に緩和する,CVC(Counterfactual Variable Control)という新しい手法を提案する。
論文 参考訳(メタデータ) (2020-10-12T10:09:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。