論文の概要: Motion Detection using CSI from Raspberry Pi 4
- arxiv url: http://arxiv.org/abs/2111.09091v1
- Date: Wed, 17 Nov 2021 13:17:02 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-18 18:02:23.983798
- Title: Motion Detection using CSI from Raspberry Pi 4
- Title(参考訳): Raspberry Pi 4のCSIを用いた動き検出
- Authors: Glenn Forbes, Stewart Massie, Susan Craw, Christopher Clare
- Abstract要約: チャネル状態情報(Channel State Information, CSI)は、低コストで非侵襲的な無線センシング方式である。
Raspberry Pi 4で収集, 処理されたCSIデータを用いた, 自己校正型モーション検出システムを開発した。
- 参考スコア(独自算出の注目度): 5.826796031213696
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Monitoring behaviour in smart homes using sensors can offer insights into
changes in the independent ability and long-term health of residents. Passive
Infrared motion sensors (PIRs) are standard, however may not accurately track
the full duration of movement. They also require line-of-sight to detect motion
which can restrict performance and ensures they must be visible to residents.
Channel State Information (CSI) is a low cost, unintrusive form of radio
sensing which can monitor movement but also offers opportunities to generate
rich data. We have developed a novel, self-calibrating motion detection system
which uses CSI data collected and processed on a stock Raspberry Pi 4. This
system exploits the correlation between CSI frames, on which we perform
variance analysis using our algorithm to accurately measure the full period of
a resident's movement. We demonstrate the effectiveness of this approach in
several real-world environments. Experiments conducted demonstrate that
activity start and end time can be accurately detected for motion examples of
different intensities at different locations.
- Abstract(参考訳): センサを用いたスマートホームのモニタリング行動は、住民の自立能力や長期的な健康状態の変化に対する洞察を与えることができる。
パッシブ赤外線モーションセンサー(PIR)は標準であるが、運動の全期間を正確に追跡することはできない。
また、パフォーマンスを制限し、住民に確実に見えるようにするための動きを検出するために、視線線も必要だ。
チャネル状態情報(csi)は安価で意図しない無線センシング形式であり、移動を監視できるが、リッチなデータを生成する機会を提供する。
Raspberry Pi 4で収集・処理されたCSIデータを利用した,自己校正型モーション検出システムを開発した。
本システムでは,CSIフレーム間の相関を利用して,このアルゴリズムを用いて分散解析を行い,居住者の移動の全期間を正確に測定する。
いくつかの実環境において,本手法の有効性を示す。
実験により, 異なる位置における異なる強度の運動例に対して, 活動開始時間と終了時間を正確に検出できることが示された。
関連論文リスト
- Scaling Wearable Foundation Models [54.93979158708164]
センサ基礎モデルのスケーリング特性を計算,データ,モデルサイズにわたって検討する。
最大4000万時間分の心拍数、心拍変動、心電図活動、加速度計、皮膚温度、および1分間のデータを用いて、私たちはLSMを作成します。
この結果から,LSMのスケーリング法則は,時間とセンサの両面において,計算や外挿などのタスクに対して確立されている。
論文 参考訳(メタデータ) (2024-10-17T15:08:21Z) - DiffusionPoser: Real-time Human Motion Reconstruction From Arbitrary Sparse Sensors Using Autoregressive Diffusion [10.439802168557513]
限られた数のボディウーンセンサーからのモーションキャプチャーは、健康、人間のパフォーマンス、エンターテイメントに重要な応用がある。
最近の研究は、6つのIMUを用いて、特定のセンサー構成から全身の動きを正確に再構築することに焦点を当てている。
センサの任意の組み合わせから人の動きをリアルタイムで再現する単一拡散モデルDiffusionPoserを提案する。
論文 参考訳(メタデータ) (2023-08-31T12:36:50Z) - Leveraging arbitrary mobile sensor trajectories with shallow recurrent
decoder networks for full-state reconstruction [4.243926243206826]
LSTM(long, short-term memory)ネットワークやデコーダネットワークのようなシーケンス・ツー・ベクター・モデルでは,動的情報を全状態空間推定にマッピング可能であることを示す。
ネットワークアーキテクチャの例外的な性能は、3つのアプリケーションで実証される。
論文 参考訳(メタデータ) (2023-07-20T21:42:01Z) - Event-based Simultaneous Localization and Mapping: A Comprehensive Survey [52.73728442921428]
ローカライゼーションとマッピングタスクのための非同期および不規則なイベントストリームの利点を利用する、イベントベースのvSLAMアルゴリズムのレビュー。
Paperは、イベントベースのvSLAMメソッドを、特徴ベース、ダイレクト、モーション補償、ディープラーニングの4つのカテゴリに分類する。
論文 参考訳(メタデータ) (2023-04-19T16:21:14Z) - CRONOS: Colorization and Contrastive Learning for Device-Free NLoS Human
Presence Detection using Wi-Fi CSI [9.927073290898848]
センサーやカメラによるデバイスなしの人間検出は広く採用されているが、プライバシーの問題や、動きのない人の誤検知が伴っている。
我々は,動的反復プロット(RP)とカラーコードCSI比を生成するCRONOSというシステムを提案する。
論文 参考訳(メタデータ) (2022-11-07T16:18:18Z) - E^2TAD: An Energy-Efficient Tracking-based Action Detector [78.90585878925545]
本稿では,事前定義されたキーアクションを高精度かつ効率的にローカライズするためのトラッキングベースソリューションを提案する。
UAV-Video Track of 2021 Low-Power Computer Vision Challenge (LPCVC)で優勝した。
論文 参考訳(メタデータ) (2022-04-09T07:52:11Z) - A Lightweight and Detector-free 3D Single Object Tracker on Point Clouds [50.54083964183614]
生のLiDARスキャンにおける物体の点雲は、通常スパースで不完全であるため、正確な目標固有検出を行うのは簡単ではない。
DMTは、複雑な3D検出器の使用を完全に除去する3Dトラッキングネットワークである。
論文 参考訳(メタデータ) (2022-03-08T17:49:07Z) - DeepTimeAnomalyViz: A Tool for Visualizing and Post-processing Deep
Learning Anomaly Detection Results for Industrial Time-Series [88.12892448747291]
DeTAVIZ インタフェースは Web ブラウザをベースとした可視化ツールで,特定の問題における DL ベースの異常検出の実現可能性の迅速な探索と評価を行う。
DeTAVIZを使えば、ユーザーは複数のポスト処理オプションを簡単かつ迅速に繰り返し、異なるモデルを比較することができ、選択したメトリックに対して手動で最適化できる。
論文 参考訳(メタデータ) (2021-09-21T10:38:26Z) - Energy Aware Deep Reinforcement Learning Scheduling for Sensors
Correlated in Time and Space [62.39318039798564]
相関情報を利用するスケジューリング機構を提案する。
提案したメカニズムは、センサが更新を送信する頻度を決定することができる。
我々は,センサの寿命を大幅に延長できることを示した。
論文 参考訳(メタデータ) (2020-11-19T09:53:27Z) - Data-Driven Distributed State Estimation and Behavior Modeling in Sensor
Networks [5.817715558396024]
センサネットワークにおける状態推定と行動学習の同時学習の問題を定式化する。
本稿では,ガウス過程に基づくベイズフィルタ(GP-BayesFilters)をオンライン分散環境に拡張することで,シンプルで効果的な解を提案する。
提案手法の有効性は,マルチロボットプラットフォームから収集した合成データとデータの両方を用いて,未知の動作行動を持つ物体の追跡に評価される。
論文 参考訳(メタデータ) (2020-09-22T21:31:18Z) - RF Sensing for Continuous Monitoring of Human Activities for Home
Consumer Applications [13.353145284926986]
ホームモニタリングのためのRFセンシングシステムについて報告する。
本システムは,日常生活活動(ADL)を認識し,ユニークな動作特性を検出する。
異なる動きの遷移時間と時間スパンの両方を見つけると、分類が改善される。
論文 参考訳(メタデータ) (2020-03-21T16:52:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。