論文の概要: Self-Supervised Predictive Convolutional Attentive Block for Anomaly
Detection
- arxiv url: http://arxiv.org/abs/2111.09099v3
- Date: Fri, 19 Nov 2021 15:20:58 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-22 12:27:12.462954
- Title: Self-Supervised Predictive Convolutional Attentive Block for Anomaly
Detection
- Title(参考訳): 異常検出のための自己監督型予測畳み込み回避ブロック
- Authors: Nicolae-Catalin Ristea, Neelu Madan, Radu Tudor Ionescu, Kamal
Nasrollahi, Fahad Shahbaz Khan, Thomas B. Moeslund, Mubarak Shah
- Abstract要約: 本稿では,再建に基づく機能を,新たな自己監督型予測アーキテクチャビルディングブロックに統合することを提案する。
我々のブロックは、受容領域におけるマスク領域に対する再構成誤差を最小限に抑える損失を備える。
画像やビデオの異常検出のための最先端フレームワークに組み込むことで,ブロックの汎用性を実証する。
- 参考スコア(独自算出の注目度): 97.93062818228015
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection is commonly pursued as a one-class classification problem,
where models can only learn from normal training samples, while being evaluated
on both normal and abnormal test samples. Among the successful approaches for
anomaly detection, a distinguished category of methods relies on predicting
masked information (e.g. patches, future frames, etc.) and leveraging the
reconstruction error with respect to the masked information as an abnormality
score. Different from related methods, we propose to integrate the
reconstruction-based functionality into a novel self-supervised predictive
architectural building block. The proposed self-supervised block is generic and
can easily be incorporated into various state-of-the-art anomaly detection
methods. Our block starts with a convolutional layer with dilated filters,
where the center area of the receptive field is masked. The resulting
activation maps are passed through a channel attention module. Our block is
equipped with a loss that minimizes the reconstruction error with respect to
the masked area in the receptive field. We demonstrate the generality of our
block by integrating it into several state-of-the-art frameworks for anomaly
detection on image and video, providing empirical evidence that shows
considerable performance improvements on MVTec AD, Avenue, and ShanghaiTech.
- Abstract(参考訳): 異常検出は、通常と異常の両方のテストサンプルで評価しながら、モデルが通常のトレーニングサンプルからのみ学習できる、一級分類問題として一般的に追求されている。
異常検出に成功している手法としては,マスク情報(パッチ,将来のフレームなど)の予測や,マスク情報に対する再構成誤差を異常スコアとして活用する手法がある。
関連する手法と異なり,新しい自己教師あり予測アーキテクチャ構築ブロックに再構成に基づく機能を統合することを提案する。
提案する自己教師ブロックは汎用的であり、様々な最先端の異常検出方法に容易に組み込むことができる。
私たちのブロックは、レセプティブフィールドの中心領域がマスクされている拡張フィルタを備えた畳み込み層から始まります。
得られた活性化マップはチャネルアテンションモジュールを通過します。
我々のブロックは、受容領域におけるマスク領域に対する再構成誤差を最小限に抑える損失を備える。
画像や動画の異常検出のための最先端フレームワークに組み込んで,MVTec AD, Avenue, ShanghaiTechの性能向上を示す実証的な証拠を提供することで,ブロックの汎用性を実証する。
関連論文リスト
- Visual Anomaly Detection Via Partition Memory Bank Module and Error
Estimation [28.100204573591505]
視覚的異常検出のためのメモリモジュールに基づく再構成手法は, 正常サンプルに対する再構成誤差を狭めつつ, 異常サンプルに対して増大させる。
本研究は、効果的な正常な特徴を共同で学習し、好ましくない再構成誤りを除去する、新しい教師なし視覚異常検出法を提案する。
提案手法の有効性を評価するため, 広く使用されている3つの異常検出データセットに対して, 広範囲にわたる実験を行った。
論文 参考訳(メタデータ) (2022-09-26T06:15:47Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [123.8534356845092]
本稿では, 自己監督型マスク型畳み込み変圧器ブロック (SSMCTB) について述べる。
本研究では,従来の自己監督型予測畳み込み阻止ブロック(SSPCAB)を3次元マスク付き畳み込み層で拡張する。
このブロックは,医療画像やサーマルビデオに異常検出を加えることで,幅広いタスクに適用可能であることを示す。
論文 参考訳(メタデータ) (2022-09-25T04:56:10Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [93.68531382792366]
本稿では,深層畳み込み型オートエンコーダのための自己教師型学習システムを提案する。
モデルが修正された再構成エラーによってデータ多様体に集中するように調整しながら、トレーニング中に識別情報を使用することができる。
MVTec 異常検出データセットに対する実験により,提案手法の高精度な認識とローカライゼーション性能が示された。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - AnoViT: Unsupervised Anomaly Detection and Localization with Vision
Transformer-based Encoder-Decoder [3.31490164885582]
我々は,画像パッチ間のグローバルな関係を学習することにより,通常の情報を反映する視覚変換器を用いたエンコーダデコーダモデルAnoViTを提案する。
提案モデルは,3つのベンチマークデータセット上での畳み込みモデルよりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-03-21T09:01:37Z) - Object-centric and memory-guided normality reconstruction for video
anomaly detection [56.64792194894702]
本稿では,ビデオ監視における異常検出問題に対処する。
異常事象の固有な規則性と不均一性のため、問題は正規性モデリング戦略と見なされる。
我々のモデルは、トレーニング中に異常なサンプルを見ることなく、オブジェクト中心の正規パターンを学習する。
論文 参考訳(メタデータ) (2022-03-07T19:28:39Z) - A Multi-Scale A Contrario method for Unsupervised Image Anomaly
Detection [0.5156484100374058]
コンボリューションにより得られた特徴写像に統計的解析を適用した画像中の異常を検出するためのコントロリオフレームワークを提案する。
提案手法はマルチスケールで完全に教師なしであり,様々なシナリオで異常を検出することができる。
この研究の最終的な目標は、自動車産業における革サンプルの微妙な欠陥を検出することであるが、同じアルゴリズムが、パブリックな異常データセットにおけるアート結果の状態を達成していることを示す。
論文 参考訳(メタデータ) (2021-10-05T23:29:58Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
通常のトレーニングデータのみを用いて異常検知器を構築するためのフレームワークを提案する。
まず、自己教師付き深層表現を学習し、学習した表現の上に生成的1クラス分類器を構築する。
MVTec異常検出データセットに関する実証研究は,提案アルゴリズムが実世界の様々な欠陥を検出可能であることを実証している。
論文 参考訳(メタデータ) (2021-04-08T19:04:55Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。