論文の概要: Self-Supervised Training with Autoencoders for Visual Anomaly Detection
- arxiv url: http://arxiv.org/abs/2206.11723v8
- Date: Mon, 13 May 2024 08:43:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 02:01:31.855575
- Title: Self-Supervised Training with Autoencoders for Visual Anomaly Detection
- Title(参考訳): 視覚異常検出のためのオートエンコーダを用いた自己監督訓練
- Authors: Alexander Bauer, Shinichi Nakajima, Klaus-Robert Müller,
- Abstract要約: 我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
- 参考スコア(独自算出の注目度): 61.62861063776813
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We focus on a specific use case in anomaly detection where the distribution of normal samples is supported by a lower-dimensional manifold. Here, regularized autoencoders provide a popular approach by learning the identity mapping on the set of normal examples, while trying to prevent good reconstruction on points outside of the manifold. Typically, this goal is implemented by controlling the capacity of the model, either directly by reducing the size of the bottleneck layer or implicitly by imposing some sparsity (or contraction) constraints on parts of the corresponding network. However, neither of these techniques does explicitly penalize the reconstruction of anomalous signals often resulting in poor detection. We tackle this problem by adapting a self-supervised learning regime that exploits discriminative information during training but focuses on the submanifold of normal examples. Informally, our training objective regularizes the model to produce locally consistent reconstructions, while replacing irregularities by acting as a filter that removes anomalous patterns. To support this intuition, we perform a rigorous formal analysis of the proposed method and provide a number of interesting insights. In particular, we show that the resulting model resembles a non-linear orthogonal projection of partially corrupted images onto the submanifold of uncorrupted samples. On the other hand, we identify the orthogonal projection as an optimal solution for a number of regularized autoencoders including the contractive and denoising variants. We support our theoretical analysis by empirical evaluation of the resulting detection and localization performance of the proposed method. In particular, we achieve a new state-of-the-art result on the MVTec AD dataset -- a challenging benchmark for visual anomaly detection in the manufacturing domain.
- Abstract(参考訳): 我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
ここで、正規化された自己エンコーダは、正規例の集合上の恒等写像を学習し、多様体の外側の点に対する良い再構成を防ごうとして、一般的なアプローチを提供する。
通常、このゴールは、ボトルネック層のサイズを減らし、あるいは暗黙的に対応するネットワークの一部に間隔(あるいは収縮)の制約を課すことによって、モデルのキャパシティを直接制御することで達成される。
しかし、どちらの手法も異常信号の復元を明示的に罰するものではない。
我々は、訓練中に識別情報を活用しながら、通常の例のサブ多様体に焦点をあてる自己指導型学習体制を適用することで、この問題に対処する。
学習目的は,異常パターンを除去するフィルタとして機能し,不規則性を置き換えつつ,局所的に一貫した再構成を生成するためにモデルを正規化することである。
この直感を支援するために,提案手法の厳密な形式解析を行い,多くの興味深い知見を提供する。
特に, 得られたモデルは, 部分的に破損した画像の非直線直交射影に似ており, 破損しないサンプルのサブマニフォールドに映し出されることを示す。
一方, 直交射影は, 契約型および復調型を含む多数の正規化オートエンコーダの最適解である。
提案手法における検出および位置推定性能の実証評価により,提案手法の理論的解析を支援する。
特に、製造領域における視覚異常検出の難しいベンチマークであるMVTec ADデータセット上で、最先端の新たな結果を達成する。
関連論文リスト
- MeLIAD: Interpretable Few-Shot Anomaly Detection with Metric Learning and Entropy-based Scoring [2.394081903745099]
本稿では,新たな異常検出手法であるMeLIADを提案する。
MeLIADはメートル法学習に基づいており、真の異常の事前分布仮定に頼ることなく、設計による解釈可能性を達成する。
解釈可能性の定量的かつ定性的な評価を含む5つの公開ベンチマークデータセットの実験は、MeLIADが異常検出とローカライゼーション性能の改善を達成することを実証している。
論文 参考訳(メタデータ) (2024-09-20T16:01:43Z) - GLAD: Towards Better Reconstruction with Global and Local Adaptive Diffusion Models for Unsupervised Anomaly Detection [60.78684630040313]
拡散モデルは、特定のノイズを付加したテスト画像の通常の画像を再構成する傾向がある。
世界的視点から見ると、異なる異常による画像再構成の難しさは不均一である。
本稿では,非教師付き異常検出のためのグローバルかつ局所的な適応拡散モデル(GLADと略す)を提案する。
論文 参考訳(メタデータ) (2024-06-11T17:27:23Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - Targeted collapse regularized autoencoder for anomaly detection: black hole at the center [3.924781781769534]
オートエンコーダは通常のクラスを超えて一般化することができ、いくつかの異常なサンプルに対して小さな再構成誤差を達成できる。
我々は、ニューラルネットワークコンポーネントの追加、計算の関与、煩雑なトレーニングの代わりに、再構成損失を計算的に軽い用語で補うという、驚くほど簡単な方法を提案する。
これは、オートエンコーダに基づく異常検出アルゴリズムのブラックボックスの性質を緩和し、さらなる利点、障害事例、潜在的な新しい方向の解明のための道筋を提供する。
論文 参考訳(メタデータ) (2023-06-22T01:33:47Z) - Self-Supervised Predictive Convolutional Attentive Block for Anomaly
Detection [97.93062818228015]
本稿では,再建に基づく機能を,新たな自己監督型予測アーキテクチャビルディングブロックに統合することを提案する。
我々のブロックは、受容領域におけるマスク領域に対する再構成誤差を最小限に抑える損失を備える。
画像やビデオの異常検出のための最先端フレームワークに組み込むことで,ブロックの汎用性を実証する。
論文 参考訳(メタデータ) (2021-11-17T13:30:31Z) - A Multi-Scale A Contrario method for Unsupervised Image Anomaly
Detection [0.5156484100374058]
コンボリューションにより得られた特徴写像に統計的解析を適用した画像中の異常を検出するためのコントロリオフレームワークを提案する。
提案手法はマルチスケールで完全に教師なしであり,様々なシナリオで異常を検出することができる。
この研究の最終的な目標は、自動車産業における革サンプルの微妙な欠陥を検出することであるが、同じアルゴリズムが、パブリックな異常データセットにおけるアート結果の状態を達成していることを示す。
論文 参考訳(メタデータ) (2021-10-05T23:29:58Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。