Differentially Private Federated Learning on Heterogeneous Data
- URL: http://arxiv.org/abs/2111.09278v1
- Date: Wed, 17 Nov 2021 18:23:49 GMT
- Title: Differentially Private Federated Learning on Heterogeneous Data
- Authors: Maxence Noble, Aur\'elien Bellet, Aymeric Dieuleveut
- Abstract summary: Federated Learning (FL) is a paradigm for large-scale distributed learning.
It faces two key challenges: (i) efficient training from highly heterogeneous user data, and (ii) protecting the privacy of participating users.
We propose a novel FL approach to tackle these two challenges together by incorporating Differential Privacy (DP) constraints.
- Score: 10.431137628048356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is a paradigm for large-scale distributed learning
which faces two key challenges: (i) efficient training from highly
heterogeneous user data, and (ii) protecting the privacy of participating
users. In this work, we propose a novel FL approach (DP-SCAFFOLD) to tackle
these two challenges together by incorporating Differential Privacy (DP)
constraints into the popular SCAFFOLD algorithm. We focus on the challenging
setting where users communicate with a ''honest-but-curious'' server without
any trusted intermediary, which requires to ensure privacy not only towards a
third-party with access to the final model but also towards the server who
observes all user communications. Using advanced results from DP theory, we
establish the convergence of our algorithm for convex and non-convex
objectives. Our analysis clearly highlights the privacy-utility trade-off under
data heterogeneity, and demonstrates the superiority of DP-SCAFFOLD over the
state-of-the-art algorithm DP-FedAvg when the number of local updates and the
level of heterogeneity grow. Our numerical results confirm our analysis and
show that DP-SCAFFOLD provides significant gains in practice.
Related papers
- A Stochastic Optimization Framework for Private and Fair Learning From Decentralized Data [14.748203847227542]
We develop a novel algorithm for private and fair federated learning (FL)
Our algorithm satisfies inter-silo record-level differential privacy (ISRL-DP)
Experiments demonstrate the state-of-the-art fairness-accuracy framework tradeoffs of our algorithm across different privacy levels.
arXiv Detail & Related papers (2024-11-12T15:51:35Z) - Federated Face Forgery Detection Learning with Personalized Representation [63.90408023506508]
Deep generator technology can produce high-quality fake videos that are indistinguishable, posing a serious social threat.
Traditional forgery detection methods directly centralized training on data.
The paper proposes a novel federated face forgery detection learning with personalized representation.
arXiv Detail & Related papers (2024-06-17T02:20:30Z) - Federated Learning Empowered by Generative Content [55.576885852501775]
Federated learning (FL) enables leveraging distributed private data for model training in a privacy-preserving way.
We propose a novel FL framework termed FedGC, designed to mitigate data heterogeneity issues by diversifying private data with generative content.
We conduct a systematic empirical study on FedGC, covering diverse baselines, datasets, scenarios, and modalities.
arXiv Detail & Related papers (2023-12-10T07:38:56Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
Federated learning (FL) has been recognized as a rapidly growing area, where the model is trained over clients under the FL orchestration (PS)
In this paper, we propose a novel primal sparification algorithm for and guarantee non-smooth FL problems.
Its unique insightful properties and its analyses are also presented.
arXiv Detail & Related papers (2023-10-30T14:15:47Z) - Privacy-Preserving Federated Learning over Vertically and Horizontally
Partitioned Data for Financial Anomaly Detection [11.167661320589488]
In real-world financial anomaly detection scenarios, the data is partitioned both vertically and horizontally.
Our solution combines fully homomorphic encryption (HE), secure multi-party computation (SMPC), differential privacy (DP)
Our solution won second prize in the first phase of the U.S. Privacy Enhancing Technologies (PETs) Prize Challenge.
arXiv Detail & Related papers (2023-10-30T06:51:33Z) - FedSIS: Federated Split Learning with Intermediate Representation
Sampling for Privacy-preserving Generalized Face Presentation Attack
Detection [4.1897081000881045]
Lack of generalization to unseen domains/attacks is the Achilles heel of most face presentation attack detection (FacePAD) algorithms.
In this work, a novel framework called Federated Split learning with Intermediate representation Sampling (FedSIS) is introduced for privacy-preserving domain generalization.
arXiv Detail & Related papers (2023-08-20T11:49:12Z) - FedLAP-DP: Federated Learning by Sharing Differentially Private Loss Approximations [53.268801169075836]
We propose FedLAP-DP, a novel privacy-preserving approach for federated learning.
A formal privacy analysis demonstrates that FedLAP-DP incurs the same privacy costs as typical gradient-sharing schemes.
Our approach presents a faster convergence speed compared to typical gradient-sharing methods.
arXiv Detail & Related papers (2023-02-02T12:56:46Z) - Differentially Private Federated Clustering over Non-IID Data [59.611244450530315]
clustering clusters (FedC) problem aims to accurately partition unlabeled data samples distributed over massive clients into finite clients under the orchestration of a server.
We propose a novel FedC algorithm using differential privacy convergence technique, referred to as DP-Fed, in which partial participation and multiple clients are also considered.
Various attributes of the proposed DP-Fed are obtained through theoretical analyses of privacy protection, especially for the case of non-identically and independently distributed (non-i.i.d.) data.
arXiv Detail & Related papers (2023-01-03T05:38:43Z) - Subject Granular Differential Privacy in Federated Learning [2.9439848714137447]
We propose two new algorithms that enforce subject level DP at each federation user locally.
Our first algorithm, called LocalGroupDP, is a straightforward application of group differential privacy in the popular DP-SGD algorithm.
Our second algorithm is based on a novel idea of hierarchical gradient averaging (HiGradAvgDP) for subjects participating in a training mini-batch.
arXiv Detail & Related papers (2022-06-07T23:54:36Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - SPEED: Secure, PrivatE, and Efficient Deep learning [2.283665431721732]
We introduce a deep learning framework able to deal with strong privacy constraints.
Based on collaborative learning, differential privacy and homomorphic encryption, the proposed approach advances state-of-the-art.
arXiv Detail & Related papers (2020-06-16T19:31:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.