See Eye to Eye: A Lidar-Agnostic 3D Detection Framework for Unsupervised
Multi-Target Domain Adaptation
- URL: http://arxiv.org/abs/2111.09450v2
- Date: Mon, 10 Apr 2023 21:32:35 GMT
- Title: See Eye to Eye: A Lidar-Agnostic 3D Detection Framework for Unsupervised
Multi-Target Domain Adaptation
- Authors: Darren Tsai and Julie Stephany Berrio and Mao Shan and Stewart Worrall
and Eduardo Nebot
- Abstract summary: We propose an unsupervised multi-target domain adaptation framework, SEE, for transferring the performance of state-of-the-art 3D detectors across lidars.
Our approach interpolates the underlying geometry and normalizes the scan pattern of objects from different lidars before passing them to the detection network.
We demonstrate the effectiveness of SEE on public datasets, achieving state-of-the-art results, and additionally provide quantitative results on a novel high-resolution lidar to prove the industry applications of our framework.
- Score: 7.489722641968593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sampling discrepancies between different manufacturers and models of lidar
sensors result in inconsistent representations of objects. This leads to
performance degradation when 3D detectors trained for one lidar are tested on
other types of lidars. Remarkable progress in lidar manufacturing has brought
about advances in mechanical, solid-state, and recently, adjustable scan
pattern lidars. For the latter, existing works often require fine-tuning the
model each time scan patterns are adjusted, which is infeasible. We explicitly
deal with the sampling discrepancy by proposing a novel unsupervised
multi-target domain adaptation framework, SEE, for transferring the performance
of state-of-the-art 3D detectors across both fixed and flexible scan pattern
lidars without requiring fine-tuning of models by end-users. Our approach
interpolates the underlying geometry and normalizes the scan pattern of objects
from different lidars before passing them to the detection network. We
demonstrate the effectiveness of SEE on public datasets, achieving
state-of-the-art results, and additionally provide quantitative results on a
novel high-resolution lidar to prove the industry applications of our
framework.
Related papers
- Diff3DETR:Agent-based Diffusion Model for Semi-supervised 3D Object Detection [33.58208166717537]
3D object detection is essential for understanding 3D scenes.
Recent developments in semi-supervised methods seek to mitigate this problem by employing a teacher-student framework to generate pseudo-labels for unlabeled point clouds.
We introduce an Agent-based Diffusion Model for Semi-supervised 3D Object Detection (Diff3DETR)
arXiv Detail & Related papers (2024-08-01T05:04:22Z) - SplatPose & Detect: Pose-Agnostic 3D Anomaly Detection [18.796625355398252]
State-of-the-art algorithms are able to detect defects in increasingly difficult settings and data modalities.
We propose the novel 3D Gaussian splatting-based framework SplatPose which accurately estimates the pose of unseen views in a differentiable manner.
We achieve state-of-the-art results in both training and inference speed, and detection performance, even when using less training data than competing methods.
arXiv Detail & Related papers (2024-04-10T08:48:09Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
We introduce a prior-less anomaly generation paradigm and develop an innovative unsupervised anomaly detection framework named GRAD.
PatchDiff effectively expose various types of anomaly patterns.
experiments on both MVTec AD and MVTec LOCO datasets also support the aforementioned observation.
arXiv Detail & Related papers (2023-12-26T07:08:06Z) - 3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features [70.50665869806188]
3DiffTection is a state-of-the-art method for 3D object detection from single images.
We fine-tune a diffusion model to perform novel view synthesis conditioned on a single image.
We further train the model on target data with detection supervision.
arXiv Detail & Related papers (2023-11-07T23:46:41Z) - S$^3$-MonoDETR: Supervised Shape&Scale-perceptive Deformable Transformer for Monocular 3D Object Detection [21.96072831561483]
This paper proposes a novel Supervised Shape&Scale-perceptive Deformable Attention'' (S$3$-DA) module for monocular 3D object detection.
Benefiting from this, S$3$-DA effectively estimates receptive fields for query points belonging to any category, enabling them to generate robust query features.
Experiments on KITTI and Open datasets demonstrate that S$3$-DA significantly improves the detection accuracy.
arXiv Detail & Related papers (2023-09-02T12:36:38Z) - You Only Need Two Detectors to Achieve Multi-Modal 3D Multi-Object Tracking [9.20064374262956]
The proposed framework can achieve robust tracking by using only a 2D detector and a 3D detector.
It is proven more accurate than many of the state-of-the-art TBD-based multi-modal tracking methods.
arXiv Detail & Related papers (2023-04-18T02:45:18Z) - GLENet: Boosting 3D Object Detectors with Generative Label Uncertainty Estimation [70.75100533512021]
In this paper, we formulate the label uncertainty problem as the diversity of potentially plausible bounding boxes of objects.
We propose GLENet, a generative framework adapted from conditional variational autoencoders, to model the one-to-many relationship between a typical 3D object and its potential ground-truth bounding boxes with latent variables.
The label uncertainty generated by GLENet is a plug-and-play module and can be conveniently integrated into existing deep 3D detectors.
arXiv Detail & Related papers (2022-07-06T06:26:17Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
We introduce MRP-Net that constitutes a common deep network backbone with two output heads subscribing to two diverse configurations.
We derive suitable measures to quantify prediction uncertainty at both pose and joint level.
We present a comprehensive evaluation of the proposed approach and demonstrate state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2022-03-29T07:14:58Z) - Test-time Adaptation with Slot-Centric Models [63.981055778098444]
Slot-TTA is a semi-supervised scene decomposition model that at test time is adapted per scene through gradient descent on reconstruction or cross-view synthesis objectives.
We show substantial out-of-distribution performance improvements against state-of-the-art supervised feed-forward detectors, and alternative test-time adaptation methods.
arXiv Detail & Related papers (2022-03-21T17:59:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.