On how neural networks enhance quantum state tomography with constrained
measurements
- URL: http://arxiv.org/abs/2111.09504v2
- Date: Wed, 2 Aug 2023 04:40:11 GMT
- Title: On how neural networks enhance quantum state tomography with constrained
measurements
- Authors: Hailan Ma, Daoyi Dong, Ian R. Petersen, Chang-Jiang Huang, Guo-Yong
Xiang
- Abstract summary: We propose a deep neural networks based quantum state tomography (DNN-QST) approach, which are applied to three measurement-constrained cases.
DNN-QST exhibits a great potential to achieve high fidelity for quantum state tomography with limited measurement resources and can achieve improved estimation when tomographic measurements suffer from noise.
- Score: 3.1866319932300953
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum state tomography aiming at reconstructing the density matrix of a
quantum state plays an important role in various emerging quantum technologies.
Inspired by the intuition that machine learning has favorable robustness and
generalization, we propose a deep neural networks based quantum state
tomography (DNN-QST) approach, which are applied to three
measurement-constrained cases, including few measurement copies and incomplete
measurements as well as noisy measurements. Numerical results demonstrate that
DNN-QST exhibits a great potential to achieve high fidelity for quantum state
tomography with limited measurement resources and can achieve improved
estimation when tomographic measurements suffer from noise. In addition, the
results for 2-qubit states from quantum optical devices demonstrate the
generalization of DNN-QST and its robustness against possible error in the
experimental devices.
Related papers
- Universal Quantum Tomography With Deep Neural Networks [0.0]
We present two neural networks based approach for both pure and mixed quantum state tomography.
We demonstrate that our proposed methods can achieve state-of-the-art results in reconstructing mixed quantum states from experimental data.
arXiv Detail & Related papers (2024-07-01T19:09:18Z) - Corrupted sensing quantum state tomography [0.0]
We propose the concept of corrupted sensing quantum state tomography which enables the simultaneous reconstruction of quantum states and structured noise.
It is envisaged that the techniques can become a practical tool to greatly reduce the cost and computational effort for quantum tomography in noisy quantum systems.
arXiv Detail & Related papers (2024-05-23T10:13:59Z) - Quantum State Tomography with Locally Purified Density Operators and Local Measurements [17.38734393793605]
An efficient representation of quantum states enables realizing quantum state tomography with minimal measurements.
We propose an alternative approach to state tomography that uses tensor network representations of mixed states through locally purified density operators.
Our study opens avenues in quantum state tomography for two-dimensional systems using tensor network formalism.
arXiv Detail & Related papers (2023-07-31T03:14:31Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - Neural network enhanced measurement efficiency for molecular
groundstates [63.36515347329037]
We adapt common neural network models to learn complex groundstate wavefunctions for several molecular qubit Hamiltonians.
We find that using a neural network model provides a robust improvement over using single-copy measurement outcomes alone to reconstruct observables.
arXiv Detail & Related papers (2022-06-30T17:45:05Z) - Bidirectional information flow quantum state tomography [0.0]
We propose a quantum state tomography method, which is based on Bidirectional Gated Recurrent Unit neural network (BiGRU)
We are able to use fewer measurement samples in our method to reconstruct these quantum states and obtain high fidelity.
arXiv Detail & Related papers (2021-03-31T02:57:27Z) - Maximal entropy approach for quantum state tomography [3.6344381605841187]
Current quantum computing devices are noisy intermediate-scale quantum $($NISQ$)$ devices.
Quantum tomography tries to reconstruct a quantum system's density matrix by a complete set of observables.
We propose an alternative approach to quantum tomography, based on the maximal information entropy, that can predict the values of unknown observables.
arXiv Detail & Related papers (2020-09-02T04:39:45Z) - Neural network quantum state tomography in a two-qubit experiment [52.77024349608834]
Machine learning inspired variational methods provide a promising route towards scalable state characterization for quantum simulators.
We benchmark and compare several such approaches by applying them to measured data from an experiment producing two-qubit entangled states.
We find that in the presence of experimental imperfections and noise, confining the variational manifold to physical states greatly improves the quality of the reconstructed states.
arXiv Detail & Related papers (2020-07-31T17:25:12Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.