Learning Ultrasound Scanning Skills from Human Demonstrations
- URL: http://arxiv.org/abs/2111.09739v1
- Date: Tue, 9 Nov 2021 12:29:25 GMT
- Title: Learning Ultrasound Scanning Skills from Human Demonstrations
- Authors: Xutian Deng, Ziwei Lei, Yi Wang and Miao Li
- Abstract summary: We propose a learning-based framework to acquire ultrasound scanning skills from human demonstrations.
The parameters of the model are learned using the data collected from skilled sonographers' demonstrations.
The robustness of the proposed framework is validated with the experiments on real data from sonographers.
- Score: 6.971573270058377
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, the robotic ultrasound system has become an emerging topic owing to
the widespread use of medical ultrasound. However, it is still a challenging
task to model and to transfer the ultrasound skill from an ultrasound
physician. In this paper, we propose a learning-based framework to acquire
ultrasound scanning skills from human demonstrations. First, the ultrasound
scanning skills are encapsulated into a high-dimensional multi-modal model in
terms of interactions among ultrasound images, the probe pose and the contact
force. The parameters of the model are learned using the data collected from
skilled sonographers' demonstrations. Second, a sampling-based strategy is
proposed with the learned model to adjust the extracorporeal ultrasound
scanning process to guide a newbie sonographer or a robot arm. Finally, the
robustness of the proposed framework is validated with the experiments on real
data from sonographers.
Related papers
- S-CycleGAN: Semantic Segmentation Enhanced CT-Ultrasound Image-to-Image Translation for Robotic Ultrasonography [2.07180164747172]
We introduce an advanced deep learning model, dubbed S-CycleGAN, which generates high-quality synthetic ultrasound images from computed tomography (CT) data.
The synthetic images are utilized to enhance various aspects of our development of the robot-assisted ultrasound scanning system.
arXiv Detail & Related papers (2024-06-03T10:53:45Z) - Enhancing Surgical Robots with Embodied Intelligence for Autonomous Ultrasound Scanning [24.014073238400137]
Ultrasound robots are increasingly used in medical diagnostics and early disease screening.
Current ultrasound robots lack the intelligence to understand human intentions and instructions.
We propose a novel Ultrasound Embodied Intelligence system that equips ultrasound robots with the large language model and domain knowledge.
arXiv Detail & Related papers (2024-05-01T11:39:38Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - Towards a Simple Framework of Skill Transfer Learning for Robotic
Ultrasound-guidance Procedures [0.0]
We briefly review challenges in skill transfer learning for robotic ultrasound-guidance procedures.
We propose a simple framework of skill transfer learning for real-time applications in robotic ultrasound-guidance procedures.
arXiv Detail & Related papers (2023-05-06T10:37:13Z) - Localizing Scan Targets from Human Pose for Autonomous Lung Ultrasound
Imaging [61.60067283680348]
With the advent of COVID-19 global pandemic, there is a need to fully automate ultrasound imaging.
We propose a vision-based, data driven method that incorporates learning-based computer vision techniques.
Our method attains an accuracy level of 15.52 (9.47) mm for probe positioning and 4.32 (3.69)deg for probe orientation, with a success rate above 80% under an error threshold of 25mm for all scan targets.
arXiv Detail & Related papers (2022-12-15T14:34:12Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - Learning Robotic Ultrasound Scanning Skills via Human Demonstrations and
Guided Explorations [12.894853456160924]
We propose a learning-based approach to learn the robotic ultrasound scanning skills from human demonstrations.
First, the robotic ultrasound scanning skill is encapsulated into a high-dimensional multi-modal model, which takes the ultrasound images, the pose/position of the probe and the contact force into account.
Second, we leverage the power of imitation learning to train the multi-modal model with the training data collected from the demonstrations of experienced ultrasound physicians.
arXiv Detail & Related papers (2021-11-02T14:38:09Z) - Voice-assisted Image Labelling for Endoscopic Ultrasound Classification
using Neural Networks [48.732863591145964]
We propose a multi-modal convolutional neural network architecture that labels endoscopic ultrasound (EUS) images from raw verbal comments provided by a clinician during the procedure.
Our results show a prediction accuracy of 76% at image level on a dataset with 5 different labels.
arXiv Detail & Related papers (2021-10-12T21:22:24Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
Beamforming, the process of mapping received ultrasound echoes to the spatial image domain, lies at the heart of the ultrasound image formation chain.
Modern ultrasound imaging leans heavily on innovations in powerful digital receive channel processing.
Deep learning methods can play a compelling role in the digital beamforming pipeline.
arXiv Detail & Related papers (2021-09-23T15:15:21Z) - Ultrasound Image Classification using ACGAN with Small Training Dataset [0.0]
Training deep learning models requires large labeled datasets, which is often unavailable for ultrasound images.
We exploit Generative Adversarial Network (ACGAN) that combines the benefits of large data augmentation and transfer learning.
We conduct experiment on a dataset of breast ultrasound images that shows the effectiveness of the proposed approach.
arXiv Detail & Related papers (2021-01-31T11:11:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.